Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1

Supporting information

2	Disposable Tartrazine Sensor Fabricated with Synchronously Activated Nanocomposite
3	Comprising Gadolinium Molybdate Nanoflowers Anchored Functionalized Carbon
4	Nanofibers
5	Abishek Jayapaul ¹ , Rajalakshmi Sakthivel ¹ , Yu-Chien Lin ¹ , Udesh Dhawan ² , Xinke Liu ^{3,4} ,
6	Hsiao-Wei Wen ^{5,6} , Ren-Jei Chung ^{1,7,*}
7	¹ Department of Chemical Engineering and Biotechnology, National Taipei University of
8	Technology (Taipei Tech), Taipei 10608, Taiwan
9	² Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt
10	School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow,
11	Glasgow G116EW, UK
12	³ College of Materials Science and Engineering, Chinese Engineering and Research Institute of
13	Microelectronics, Shenzhen University, Shenzhen 518060, China
14	⁴ Department of Electrical and Computer Engineering, National University of Singapore,
15	Singapore 117583, Singapore
16	⁵ Department of Food Science and Biotechnology, National Chung Hsing University, Taichung
17	402202, Taiwan
18	⁶ Food and Animal Product Safety Inspection Center, National Chung Hsing University, Taichung
19	402202, Taiwan
20	⁷ High-value Biomaterials Research and Commercialization Center, National Taipei University of
21	Technology (Taipei Tech), Taipei 10608, Taiwan

- 23 *Correspondence to: Department of Chemical Engineering and Biotechnology, National Taipei
- 24 University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao E. Rd., Taipei 10608
- 25 Taiwan.
- 26 E-mail addresses: rjchung@ntut.edu.tw (R.-J. Chung)

Entry	Table of contents	Page no.
Fig. S1	Zeta potential of different modified electrodes	<u>S5</u>
Fig. S2	EIS spectra for different electrodes (Bare and	<u>S5</u>
	modified) performed in $[Fe(CN)_6]^{3-/4-}$ in 0.1 M	
	KCl as electrolyte; (inset) Randel's equivalent	
	circuit in EIS studies.	
Fig. S3	CV curves for different electrodes (Bare and	<u>S6</u>
	modified) performed in $[Fe(CN)_6]^{3-/4-}$ in 0.1 M	
	KCl as electrolyte.	
Fig. S4	CV profile obtained by varying scan rates from	<u>S7</u>
	0.02-0.2 Vs ⁻¹ at (A) Gd ₂ MoO ₆ /SPCE, (C) f-	
	CNF/SPCE, and (E) Gd2MoO6/f-CNF/SPCE; (B,	
	D, and F) corresponding calibrated plot of the	
	square root of scan rate versus anodic and	
	cathodic peak currents; All the above	
	experiments were performed in $[Fe(CN)_6]^{3-/4-}$ in	
	0.1 M KCl as electrolyte.	
Fig. S5	(A) CV profile obtained by varying scan rates	<u>S8</u>
	from 0.02-3.2 Vs ⁻¹ at Gd ₂ MoO ₆ /f-CNF/SPCE;	
	(B) Calibrated plot of the scan rate versus anodic	
	peak currents;	
	(C) log of scan rates versus log of peak currents;	
	All the above experiments were performed in	

	0.1 M PB as electrolyte	
Fig. S6	Plot of interferents versus corresponding relative	<u>S9</u>
	current error percentage.	
Fig. S7	Functional stability of Gd2MoO6/f-CNF/SPCE	<u>S9</u>
	analyzed over 50 continuous CV cycles.	
Fig. S8	(A) CV curves obtained for different SPCE	<u>S10</u>
	coated with Gd ₂ MoO ₆ /f-CNF composite;	
	(B) Calibrated plot of the modified electrodes	
	versus relative current error percentage	
Fig. S9	<i>CV plot of spiked and un-spiked addition of TRZ</i>	<u>S10</u>
	in orange juice sample	
Fig. S10	<i>CV plot of spiked and un-spiked addition of TRZ</i>	<u>S11</u>
	in orange candy sample	
Fig. S11	<i>CV plot of spiked and un-spiked addition of TRZ</i>	<u>S11</u>
	in carrot juice sample	
Fig. S12	<i>CV plot of spiked and un-spiked addition of TRZ</i>	<u>S12</u>
	in orange ice-cream sample	
Table 1	Recovery estimation table for real sample	<u>S13</u>
	analysis.	

28

Fig. S1. Zeta potential of different modified electrodes

30

Fig. S2. (A) EIS spectra for different electrodes (Bare and modified) performed in [Fe(CN)₆]^{3-/4-}in
0.1 M KCl as electrolyte; (inset) Randel's equivalent circuit in EIS studies.

35 Fig. S3. (A) CV curves for different electrodes (Bare and modified) performed in $[Fe(CN)_6]^{3-/4-in}$

36 0.1 M KCl as electrolyte.

Fig. S4. CV profile obtained by varying scan rates from 0.02-0.2 Vs⁻¹ at (A) Gd₂MoO₆/SPCE, (C)
f-CNF/SPCE, and (E) Gd₂MoO₆/f-CNF/SPCE; (B, D, and F) corresponding calibrated plot of the

40 square root of scan rate versus anodic and cathodic peak currents; All the above experiments were 41 performed in $[Fe(CN)_6]^{3-/4-}$ in 0.1 M KCl as electrolyte.

44 Fig. S5. (A) CV profile obtained by varying scan rates from 0.02-3.2 Vs⁻¹ at Gd₂MoO₆/f45 CNF/SPCE; (B) Calibrated plot of the scan rate versus anodic peak currents; (C) log of scan rates
46 versus log of peak currents; All the above experiments were performed in 0.1 M PB as electrolyte.

42

Fig. S6. Plot of interferents versus corresponding relative current error percentage.

53 Fig. S8. (A) CV curves obtained for different SPCE coated with Gd₂MoO₆/f-CNF composite; (B)

54 Calibrated plot of the modified electrodes versus relative current.

55

56

Fig. S9. DPV plot of spiked and un-spiked addition of TRZ in orange juice sample.

59 Fig. S10. DPV plot of spiked and un-spiked addition of TRZ in orange candy sample.

60

Fig. S11. DPV plot of spiked and un-spiked addition of TRZ in carrot juice sample.

Sample	Added	Found	GC-MS	Recovery (%)		RSD (±%)	
	(nmolL ⁻¹)	DPV (nmolL ⁻¹)		DPV	GC-MS	DPV	GC-MS
Orange juice	0	0	0	0	0	-	-
	100	93	91.21	93	91.21	1.69	2.94
	300	272	260.88	90.7	88.6	1.11	2.20
Orange candy	0	0	0	0		-	-
	100	103.3	99.89	103.3	99.89	2.44	2.91
	300	296.8	291.6	98.93	97.2	1.91	2.12
Carrot juice	0	0		0	0	-	-
	100	96.3	93.7	96.3	93.7	2.31	2.77
	300	279.4	263.3	93.1	87.7	2.17	2.46
Orange ice cream	0	0	0	0	0	-	-
	100	97.4	96.84	97.4	94.84	3.11	3.64
	300	283.6	276.73	94.5	92.2	2.92	3.34