Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Catalyst- and Additive-Free Three-Component Construction of Isoxazolidinyl Nucleosides and Azoles via 1,3-Dipolar Cycloaddition

Xinyufei Yuan,^a Hang Gao,^a Xing Li,^{*,a} Qin Zhang,^b Wenwen Chen,^{*,b} and Hui Wang^{*,b}

^a College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street,

Taiyuan 030024, People's Republic of China. lixing@tyut.edu.cn

^b School of Chemistry and Material Science, Shanxi Normal University, 339, Taiyu Road, Taiyuan 030000, People's Republic of China. chenwenwen12@126.com and wanghui@sxnu.edu.cn

Contents	Page no
1. General information	S-2
2. General procedures	S-3
3. Characterization data of substrate 3g	S-3
4. Characterization data of products 4	S-4
5. Characterization data of products 6	S-12
6. Characterization data of products 8	S-20
7. Characterization data of products 11	S-23
8. References	S-24
9. ¹ H-NMR and ¹³ C-NMR spectra of substrat	e 3g S-25
10. ¹ H-NMR and ¹³ C-NMR spectra of produc	ets 4 S-26
11. ¹ H-NMR and ¹³ C-NMR spectra of produc	ets 6 S-49
12. ¹ H-NMR and ¹³ C-NMR spectra of produc	ets 8 S-72
13. ¹ H-NMR and ¹³ C-NMR spectra of produc	ets 11 S-81

1. General Information

Unless otherwise noted, all reagents and solvents obtained from commercial sources were used without further purification. Some reagents such as pyrimidines, purines, imidazoles, and triazoles were purchased from Sigma-aldrich, Alfa Aesar, J&K, TCI, Acros, Fluka, Energy, and Aladdin. Deuterated solvents were purchased from Sigma-Aldrich. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether /ethyl acetate/dichloromethane. ¹H NMR spectra were taken on a Bruker AVANCE III 600 MHz NMR spectrometer. The chemical shifts are reported in ppm downfield to the CDCl₃ resonance ($\delta = 7.27$). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. ¹³C{¹H} NMR data were collected at 150 MHz with complete proton decoupling. The chemical shifts are reported in ppm downfield to the central CDCl₃ resonance ($\delta = 77.0$). High-resolution mass spectra (HRMS) were performed on a micrOTOF-Q II instrument with an ESI source. Melting points were measured with a RD-II melting point apparatus and are uncorrected. Substrates such as diazo compounds 1¹, nitrosoarenes 2^2 , N1-vinylpyrimidines 3^3 , purine nucleobase acrylates 5^4 and imidazole- or triazole-substituted acrylates 7^{4a} were synthesized according to the corresponding literature procedures. Among these starting materials, tert-butyl 2,6-dioxo-5-phenyl-3-vinyl-3,6dihydropyrimidine-1(2H)-carboxylate (**3g**) is a new compound. Other starting materials are all known compounds and the analytical data (¹HNMR) matches with the literatures. In most reactions, only one single isomer (cis- or endo-) product were obtained and the other isomer (trans- or exo-) product cannot be observed. The structures of stereochemistry for these products have been mentioned clearly throughout in the manuscript and Supporting Information. Notably, only several reactions provided two isomeric products, and the diastereomeric mixture and the structures of stereochemistry have also been mentioned clearly throughout in the manuscript and Supporting Information.

2. General procedures

2.1 General procedure for the synthesis of isoxazolidinyl nucleosides and oxazoles via catalyst-free one-pot three-component cycloadditions of diazo compounds, nitrosoarenes and vinyl pyrimidines, or vinyl purines, or vinyl imidazoles, or vinyl triazoles

To a reaction system of nitrosoarene 2 (0.15 mmol, 1.5 equiv) and α -diazo compound 1 (0.15 mmol, 1.5 equiv) in DCE (1.2 mL) was added alkene 3, 5 or 7 (0.1 mmol) under air atmosphere. Subsequently, the resulting mixture was stirred under 70 °C (oil bath) and monitored by TLC. Upon completion of the consumption of the olefin 3, 5 or 7, the reaction mixture was directly purified by silica gel column chromatography without any treatment to give the desired cycloaddition products 4, 6 and 8.

2.2 3 mmol-Scale preparation of 4a

To a round-bottom flask equipped with a magnetic stir bar were added nitrosobenzene **2a** (0.496 g, 4.5 mmol, 1.5 equiv), ethyl diazoacetate **1a** (0.521 g, 4.5 mmol, 1.5 equiv), Boc-protected N1-vinylthymine **3a** (0.757 g, 3 mmol) and DCE (25 mL) in turn. Subsequently, the reaction system was heated to 70 °C (oil bath) and stirred until Boc-protected N1-vinylthymine **3a** was completely consumed as determined by TLC. At last, the reaction mixture was concentrated in vacuum and then purified by silica gel column chromatography to give the desired product **4a** (1.068 g, 80% yield).

3. Characterization data of substrate 3g

tert-butyl 2,6-dioxo-5-phenyl-3-vinyl-3,6-dihydropyrimidine-1(2*H*)-carboxylate (3g)

₩ Boc

White solid, m.p. = 136–138 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.59 (s, 1H), 7.52 (d, J = 6.0 Hz,

2H), 7.43–7.36 (m, 3H), 7.26–7.21 (m, 1H), 5.19 (dd, J = 18.0, 6.0 Hz, 1H), 5.03 (dd, J = 9.0, 6.0 Hz, 1H), 1.62 (s, 9H) ppm; ¹³C {¹H} NMR (CDCl₃, 150 MHz) δ 159.7, 147.5, 147.2, 135.3, 131.5, 129.7, 128.7, 128.7, 128.5, 116.4, 102.3, 87.3, 27.5 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₄⁺, 315.1339; found, 315.1346.

4. Characterization data of products 4

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4a)

Yellow oil, Yield: 85% (37.8 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.80 (s, 1H), 7.29–7.25 (m, 2H), 7.07–7.01 (m, 3H), 6.41 (dd, J = 7.8, 3.8 Hz, 1H), 4.25–4.18 (m, 3H), 3.06–2.97 (m, 1H), 2.70 (dt, J = 14.0, 4.4 Hz, 1H), 1.90 (s, 3H), 1.55 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.3, 161.2, 148.8, 148.8, 147.8, 135.4, 129.2, 124.2, 115.9, 111.0, 86.8, 82.9, 67.0, 62.3, 38.7, 27.4, 14.0, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₈N₃O₇⁺, 446.1922; found, 446.1938.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-ethyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4b)

Yellow oil, Yield: 88% (40.4 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.85 (s, 1H), 7.37–7.32 (m, 2H), 7.15–7.09 (m, 3H), 6.51 (dd, J = 7.8, 3.9 Hz, 1H), 4.32–4.26 (m, 3H), 3.12–3.03 (m, 1H), 2.77 (dt, J = 14.0, 4.4 Hz, 1H), 2.38 (q, J = 7.4 Hz, 2H), 1.62 (s, 9H), 1.32 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.3, 160.8, 148.8, 148.8, 147.9, 134.8, 129.2, 124.2, 116.8, 116.0, 86.8, 82.9, 67.1, 62.3, 38.4, 27.4, 20.3, 14.0, 12.5 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₃₀N₃O₇⁺, 460.2078; found, 460.2080.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4c)

Yellow oil, Yield: 77% (34.6 mg); $R_f = 0.35$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.23 (d, J = 6.3 Hz, 1H), 7.38–7.33 (m, 2H), 7.16–7.11 (m, 3H), 6.45 (dd, J = 7.6, 2.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 4.21 (dd, J = 9.8, 5.0 Hz, 1H) 3.21–3.12 (m, 1H), 2.84–2.77 (m, 1H), 1.62 (s, 9H), 1.32 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} (CDCl₃, 100 MHz) δ 170.1, 154.6 (d, J = 28.1 Hz), 148.3, 147.3, 146.4, 141.2, 138.8, 129.2, 124.7 (d, J = 32.8 Hz), 116.4, 87.8, 83.4, 66.7, 62.5, 39.4, 27.4, 14.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅FN₃O₇⁺, 450.1671; found, 450.1678.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-chloro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4d)

Yellow oil, Yield: 90% (41.9 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (s, 1H), 7.39–7.34 (m, 2H), 7.17–7.12 (m, 3H), 6.44 (dd, J = 7.5, 2.9 Hz, 1H), 4.27 (q, J =7.2 Hz, 2H), 4.22 (dd, J = 9.8, 4.8 Hz, 1H), 3.22–3.13 (m, 1H), 2.87–2.81 (m, 1H), 1.62 (s, 9H), 1.32 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 156.6, 148.4, 147.8, 146.6, 137.0, 129.2, 124.6, 116.4, 108.9, 87.7, 83.7, 66.7, 62.6, 39.7, 27.4, 14.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅ClN₃O₇⁺, 466.1376; found, 466.1373.

Ethyl 5-(5-bromo-3-(*tert*-butoxycarbonyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4e)

Yellow oil, Yield: 85% (43.4 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (s, 1H), 7.39–7.34 (m, 2H), 7.17–7.12 (m, 3H), 6.43 (dd, J = 7.5, 2.9 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.22 (dd, J = 9.8, 4.8 Hz, 1H), 3.22–3.13 (m, 1H), 2.88–2.81 (m, 1H), 1.62 (s, 9H), 1.32 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 156.5, 148.4, 148.1, 146.7, 139.6, 129.2, 124.6, 116.4, 96.4, 87.7, 83.8, 66.8, 62.6, 39.7, 27.4, 14.1 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅BrN₃O₇⁺, 510.0870; found, 510.0861.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-iodo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4f)

Yellow oil, Yield: 82% (45.7 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.47 (s, 1H), 7.39–7.34 (m, 2H), 7.17–7.12 (m, 3H), 6.42 (dd, J = 7.5, 2.9 Hz, 1H), 4.28 (q, J =7.2 Hz, 2H), 4.23 (dd, J = 9.8, 4.7 Hz, 1H), 3.20–3.11 (m, 1H), 2.87–2.81 (m, 1H), 1.61 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 157.4, 148.5, 148.4, 146.7, 144.6, 129.2, 124.6, 116.4, 87.6, 83.7, 66.8, 62.6, 39.6, 27.3, 14.1 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₅IN₃O₇⁺, 558.0732; found, 558.0729. Ethyl 5-(3-(*tert*-butoxycarbonyl)-2,4-dioxo-5-phenyl-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4g)

Yellow oil, Yield: 88% (44.7 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.25 (s, 1H), 7.61–7.57 (m, 2H), 7.41–7.32 (m, 2H), 7.15–7.11 (m, 3H), 6.54 (dd, *J* = 7.6, 3.3 Hz, 1H), 4.31–4.21 (m, 3H), 3.20–3.11 (m, 1H), 2.94–2.86 (m, 1H), 1.63 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.1, 159.7, 148.7, 148.4, 147.7, 137.0, 132.0, 129.2, 128.5, 128.2, 128.1, 124.4, 116.2, 115.2, 87.1, 83.4, 66.9, 62.4, 39.2, 27.4, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₃₀N₃O₇⁺, 508.2078; found, 508.2078.

Ethyl 5-(4-((*ditert*-butoxycarbonyl)amino)-2-oxopyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4h)

Yellow oil, Yield: 72% (38.2 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.24 (d, *J* = 7.6 Hz, 1H), 7.38–7.33 (m, 2H), 7.12 (t, *J* = 8.5 Hz, 4H), 6.39 (dd, *J* = 7.2, 2.3 Hz, 1H), 4.23–4.17 (m, 3H), 3.31–3.22 (m, 1H), 2.90–2.84 (m, 1H), 1.57 (s, 18H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 162.6, 154.5, 149.5, 148.9, 144.0, 129.1, 124.2, 116.2, 95.9, 85.0, 84.9, 66.5, 62.2, 40.6, 27.7, 14.0 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₅N₄O₈⁺, 531.2449; found, 531.2457.

dr (*cis*-4i/*trans*-4i) = 2:1

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(*o*-tolyl)isoxazolidine-3-carboxylate (*cis*-4i)

Yellow oil, Yield: 53% (24.5 mg); $R_f = 0.22$ (PE/EA = 3:1, v/v); dr (*trans/cis*) = 2:1, ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (d, J = 1.2 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.25–7.17 (m, 3H), 6.49 (dd, J = 7.8, 3.6 Hz, 1H), 4.20 (dd, J = 9.0, 6.6 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.30–3.25 (m, 1H), 2.84–2.80 (m, 1H), 2.37 (s, 3H), 1.99 (s, 3H), 1.61 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 169.3, 161.4, 149.0, 148.0, 145.1, 136.1, 134.4, 131.4, 127.8, 126.9, 120.5, 110.6, 86.9, 83.1, 66.6, 62.1, 40.7, 27.6, 18.3, 14.1, 12.8 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₀N₃O₇⁺, 460.2078; found, 460.2075.

Ethyl-5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(*o*-tolyl)isoxazolidine-3-carboxylate (*trans*-4i)

Yellow oil, Yield: 27% (12.3 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 600 MHz) δ 7.48 (d, J = 1.2 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 7.2 Hz, 2H), 7.13–7.10 (m, 1H), 6.47 (dd, J = 7.8, 3.6 Hz, 1H), 4.51 (dd, J = 7.8, 1.8 Hz, 1H), 3.85–3.76 (m, 2H), 3.39–3.35 (m, 1H), 2.76–2.71 (m, 1H), 2.31 (s, 3H), 1.90 (s, 3H), 1.61 (s, 9H), 0.84 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 168.3, 148.8, 148.0, 143.8, 134.8, 130.7, 126.6, 126.1, 118.9, 110.6, 87.0, 83.2, 63.6, 61.2, 40.9, 29.8, 27.6, 18.4, 13.7, 12.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₀N₃O₇⁺, 460.2078; found, 460.2075.

Ethyl 5-(3-(tert-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-(m-

Yellow oil, Yield: 86% (39.5 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.80 (d, J = 1.2 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 6.87–6.83 (m, 3H), 6.40 (dd, J = 7.8, 3.8 Hz, 1H), 4.25–4.16 (m, 3H), 3.06–2.98 (m, 1H), 2.74–2.67 (m, 1H), 2.28 (s, 3H), 1.90 (d, J = 1.2 Hz, 3H), 1.54 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.4, 161.2, 148.8, 148.8, 147.8, 139.2, 135.5, 129.0, 125.1, 116.7, 113.0, 110.9, 86.8, 83.0, 66.9, 62.3, 38.9, 27.4, 21.6, 14.0, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₀N₃O₇⁺, 460.2078; found, 460.2075.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(*p*-tolyl)isoxazolidine-3-carboxylate (4k)

Yellow oil, Yield: 88% (40.4 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (d, J = 1.2 Hz, 1H), 7.06 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H), 6.37 (dd, J = 7.8, 3.8 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 4.12 (dd, J = 9.5, 5.3 Hz, 1H), 3.08–2.99 (m, 1H), 2.73–2.66 (m, 1H), 2.25 (s, 3H), 1.90 (d, J = 1.2 Hz, 3H), 1.54 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.2, 161.2, 148.8, 147.8, 146.2, 135.5, 134.3, 129.7, 116.6, 110.9, 86.8, 82.9, 67.2, 62.2, 39.1, 27.4, 14.0, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₀N₃O₇⁺, 460.2078; found, 460.2075.

dr (cis-4n/trans-4n) = 2:1

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(2-chlorophenyl)isoxazolidine-3-carboxylate (*cis*-4n)

Yellow oil, Yield: 55% (26.3 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); dr (*trans/cis*) = 2:1, ¹H NMR (CDCl₃, 400 MHz) δ 8.06 (d, J = 1.2 Hz, 1H), 7.46 (dd, J = 8.4, 1.8 Hz, 1H), 7.38 (dd, J = 7.8, 1.2 Hz, 1H), 7.32–7.29 (m, 1H), 7.20–7.17 (m, 1H), 6.55 (dd, J = 7.8, 3.6 Hz, 1H), 4.37 (dd, J = 9.0, 5.4 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.21–3.16 (m, 1H), 2.85–2.81 (m, 1H), 1.98 (s, 3H), 1.61 (s, 9H), 1.18 (t, J = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 169.0, 161.4, 149.0, 148.0, 144.3, 135.9, 130.7, 128.0, 127.9, 121.2, 110.8, 87.0, 86.9, 83.6, 66.5, 62.2, 39.7, 27.6, 14.0, 12.8 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₇ClN₃O₇⁺, 480.1532; found, 480.1529.

Ethyl(3*S*,5*S*)-5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(2-chlorophenyl)isoxazolidine-3-carboxylate (*trans*-4n)

Yellow oil, Yield: 27% (13.1 mg); $R_f = 0.26$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 600 MHz) δ 7.55 (d, J = 1.2 Hz, 1H), 7.44 (dd, J = 7.8, 1.2 Hz, 1H), 7.38 (dd, J = 8.4, 1.8 Hz, 1H), 7.27–7.24 (m, 1H), 7.14–7.11 (m, 1H), 6.59 (dd, J = 7.8, 3.6 Hz, 1H), 5.03 (d, J = 7.8 Hz, 1H), 3.86–3.80 (m, 2H), 3.38–3.34 (m, 1H), 2.76–2.72 (m, 1H), 1.92 (s, 3H), 1.61 (s, 9H), 0.85 (t, J = 7.2 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 150 MHz) δ 168.1, 161.4, 148.8, 148.0, 142.5, 134.9, 127.5, 124.8, 120.4, 111.2, 87.0, 82.3, 63.1, 61.3, 40.1, 27.6, 13.8, 12.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₇ClN₃O₇⁺, 480.1532; found, 480.1529.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(3-chlorophenyl)isoxazolidine-3-carboxylate (40)

Yellow oil, Yield: 83% (39.8 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, J = 1.2 Hz, 1H), 7.19 (t, J = 8.1 Hz, 1H), 7.05 (t, J = 2.1 Hz, 1H), 7.01–6.98 (m, 1H), 6.93–6.90 (m, 1H), 6.40 (dd, J = 7.7, 3.9 Hz, 1H), 4.26–4.16 (m, 3H), 3.07–2.98 (m, 1H), 2.72 (dt, J = 14.0, 4.4 Hz, 1H), 1.92 (d, J = 1.1 Hz, 3H), 1.54 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 161.1, 150.0, 148.8, 147.7, 135.2, 130.3, 124.0, 116.0, 113.8, 111.1, 86.9, 83.0, 66.7, 62.5, 38.5, 27.4, 14.0, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₇ClN₃O₇⁺, 480.1532; found, 480.1535.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(4-chlorophenyl)isoxazolidine-3-carboxylate (4p)

Yellow oil, Yield: 87% (41.7 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (d, J = 1.2 Hz, 1H), 7.21 (d, J = 9.0 Hz, 1H), 6.98 (d, J = 9.0 Hz, 2H), 6.40 (dd, J = 7.8, 4.0 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.13 (dd, J = 9.6, 5.0Hz, 1H), 3.07–2.98 (m, 1H), 2.76–2.69 (m, 1H), 1.90 (d, J = 1.2 Hz, 3H), 1.54 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H), ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.0, 161.1, 148.8, 147.7, 147.4, 135.2, 129.5, 129.2, 117.4, 111.1, 86.9, 82.9, 67.0, 62.5, 38.6, 27.4, 14.0, 12.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₇ClN₃O₇⁺, 480.1532; found, 480.1540.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(4-fluorophenyl)isoxazolidine-3-carboxylate (4q)

Yellow oil, Yield: 72% (33.3 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 600 MHz) δ 7.86 (d, J = 1.2 Hz, 1H), 7.14–7.12 (m, 2H), 7.05–7.02 (m, 2H), 6.48 (dd, J = 7.8, 3.6 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.16 (dd, J = 9.0, 5.4 Hz, 1H), 3.17–3.12 (m, 1H), 2.81–2.77 (m, 1H), 1.98 (s, 3H), 1.61 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 170.0, 161.3, 160.9, 159.3, 149.0, 147.9, 144.8, 135.5, 118.9, 116.2, 116.0, 111.2, 87.1, 83.0, 67.7, 62.5, 39.5, 27.6, 14.2, 12.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₇FN₃O₇⁺, 464.1828; found, 464.1825.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(3,4-dimethylphenyl)isoxazolidine-3-carboxylate (4r)

Yellow oil, Yield: 72% (34.1 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (d, J = 1.1 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.78 (dd, J = 8.1, 2.4 Hz, 1H), 6.38 (dd, J = 7.8, 3.7 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 4.12 (dd, J = 9.5, 5.3 Hz, 1H), 3.08–3.00 (m, 1H), 2.72–2.65 (m, 1H), 2.19 (s, 3H), 2.15 (s, 3H), 1.90 (d, J = 1.0 Hz, 3H), 1.54 (s, 9H), 1.24 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.3, 161.2, 148.8, 147.8, 146.5, 137.6, 135.6, 133.0, 130.2, 118.1, 113.9, 110.8, 86.8, 82.9, 67.1, 62.2, 39.3, 27.4, 20.1, 19.1, 14.0, 12.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂N₃O₇⁺, 474.2235; found, 474.2205.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(3,5-dichlorophenyl)isoxazolidine-3-carboxylate (4s)

Yellow oil, Yield: 74% (38.0 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (d, J = 1.2 Hz, 1H), 7.01 (t, J = 1.8 Hz, 1H), 6.92 (d, J = 1.7 Hz, 2H), 6.40 (dd, J = 7.7, 3.9 Hz, 1H), 4.29–4.20 (m, 2H), 4.16 (dd, J = 9.8, 4.6 Hz, 1H), 3.07–2.99 (m, 1H), 2.75 (dt, J = 14.1, 4.3 Hz, 1H), 1.90 (d, J = 1.1 Hz, 3H), 1.55 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.7, 161.0, 150.6, 148.7, 147.6, 135.7, 134.9, 123.7, 114.1, 111.3, 87.0, 83.0, 66.4, 62.7, 38.3, 27.4, 14.0, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₆Cl₂N₃O₇⁺, 514.1142; found, 514.1137.

Ethyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-(pyridin-2-yl)isoxazolidine-3-carboxylate (4t)

Yellow oil, Yield: 71% (31.7 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.21–8.19 (m, 1H), 7.78 (d, J = 1.2 Hz, 1H), 7.63–7.58 (m, 1H), 7.15 (d, J = 8.3 Hz, 1H), 6.94–6.90 (m, 1H), 6.34 (dd, J = 8.2, 4.5 Hz, 1H), 5.16 (dd, J = 9.7, 4.4 Hz, 1H), 4.24 (q, J =7.2Hz, 2H), 2.93–2.84 (m, 1H), 2.62 (dt, J = 14.0, 4.4 Hz, 1H), 1.91 (d, J = 1.2 Hz, 3H), 1.55 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 171.2, 161.0, 159.5, 148.9, 147.7, 147.4, 138.5, 135.3, 119.0, 111.6, 110.8, 86.9, 83.2, 62.2, 36.6, 27.4, 14.1, 12.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₇N₄O₇⁺, 447.1874; found, 447.1871.

Methyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4u)

Yellow oil, Yield: 86% (37.1 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, J = 1.2 Hz, 1H), 7.25 (dd, J = 8.8, 7.2 Hz, 2H), 7.04 (d, J = 7.8 Hz, 3H), 6.42 (dd, J = 7.9, 4.1 Hz, 1H), 4.22 (dd, J = 9.6, 4.9 Hz, 1H), 3.78 (s, 3H), 3.05–2.96 (m, 1H), 2.69 (dt, J = 14.0, 4.6 Hz, 1H), 1.91 (d, J = 1.0 Hz, 3H), 1.55 (s, 9H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 170.9, 161.1, 148.8, 148.7, 147.8, 135.3, 129.3, 124.3, 115.9, 111.1, 86.9, 82.9, 66.9, 53.2, 38.4, 27.4, 12.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₆N₃O₇⁺, 432.1765; found, 432.1752.

tert-Butyl 5-(3-(*tert*-butoxycarbonyl)-5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)-2-phenylisoxazolidine-3-carboxylate (4v)

Yellow oil, Yield: 80% (37.9 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, J = 1.2 Hz, 1H), 7.25 (dd, J = 8.7, 7.4 Hz, 2H), 7.07–7.01 (m, 3H), 6.37 (dd, J = 7.6, 3.6 Hz, 1H), 4.05 (dd, J = 9.6, 5.0 Hz, 1H), 3.04–2.96 (m, 1H), 2.73–2.67 (m, 1H), 1.89 (d, J = 1.2 Hz, 3H), 1.55 (s, 9H), 1.42 (s, 9H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.3, 161.2, 149.0, 148.8, 147.8, 135.6, 129.1, 124.0, 116.0, 110.8, 86.6, 83.2, 83.0, 67.7, 39.1, 27.8, 27.4, 12.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂N₃O₇⁺, 474.2235; found, 474.2232.

tert-Butyl 3-(3-benzoyl-2-phenylisoxazolidin-5-yl)-5-methyl-2,6-dioxo-3,6dihydropyrimidine-1(2*H*)-carboxylate (4w)

Yellow oil, Yield: 61% (29.1 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.96–7.93 (m, 2H), 7.86 (d, J = 1.2 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.25 (dd, J = 8.7, 7.4 Hz, 2H), 7.09–7.02 (m, 3H), 6.42 (dd, J = 8.2, 4.2 Hz, 1H), 5.13 (dd, J = 9.3, 5.0 Hz, 1H), 3.08–2.99 (m, 1H), 2.77 (dt, J = 13.9, 4.6 Hz, 1H), 1.94 (d, J = 1.2 Hz, 3H), 1.55 (s, 9H), 1.53 (s, 9H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 195.4, 161.1, 149.0, 148.3, 147.8, 135.7, 135.0, 134.2, 129.4, 129.0, 128.8, 124.3, 116.1, 111.2, 86.8, 82.8, 68.4, 37.5, 27.4, 12.8 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₈N₃O₆⁺, 478.1973; found, 478.1986.

5. Characterization data of products 6

Diethyl 2-phenyl-5-(9H-purin-9-yl)isoxazolidine-3,4-dicarboxylate (6a)

Yellow oil, Yield: 83% (34.1 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ

9.19 (s, 1H), 9.04 (s, 1H), 8.85 (s, 1H), 7.39–7.34 (m, 2H), 7.21 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 3.7 Hz, 1H), 4.75 (d, J = 5.1 Hz, 1H), 4.50 (dd, J = 5.0, 3.8 Hz, 1H), 4.29 (d, J = 7.1 Hz, 2H), 4.18 (d, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.0, 168.1, 153.0, 151.3, 148.9, 148.9, 147.6, 144.0, 133.9, 129.2, 125.1, 117.2, 82.8, 70.3, 62.8, 62.7, 57.9, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₂N₅O₅⁺, 412.1615; found, 412.1628.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6b)

Yellow oil, Yield: 85% (37.9 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (s, 1H), 8.81 (s, 1H), 7.35 (dd, J = 8.6, 7.4 Hz, 2H), 7.24–7.20 (m, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 3.4 Hz, 1H), 4.71 (d, J = 5.2 Hz, 1H), 4.48 (dd, J = 5.1, 3.6 Hz, 1H), 4.30 (d, J =7.1 Hz, 2H), 4.21 (d, J = 7.1 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.8, 167.9, 152.4, 151.6, 151.3, 147.4, 144.1, 131.5, 129.2, 125.4, 117.5, 83.3, 70.3, 62.8, 62.8, 58.2, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₁ClN₅O₅⁺, 446.1226; found, 446.1223.

Diethyl 5-(6-bromo-9*H*-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6c)

Yellow oil, Yield: 84% (41.2 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (s, 1H), 8.75 (s, 1H), 7.34 (dd, J = 8.7, 7.4 Hz, 2H), 7.20 (dd, J = 8.6, 1.0 Hz, 2H), 7.17 (t, J =7.4 Hz, 1H), 7.04 (d, J = 3.4 Hz, 1H), 4.70 (d, J = 5.2 Hz, 1H), 4.47 (dd, J = 5.2, 3.4 Hz, 1H), 4.28 (d, J = 7.1 Hz, 2H), 4.20 (d, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 100 MHz) δ 168.8, 167.9, 152.3, 150.4, 147.4, 143.9, 143.3, 134.1, 129.2, 125.4, 117.5, 83.3, 70.7, 62.8, 62.8, 58.2, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₁BrN₅O₅⁺, 490.0721; found, 490.0720.

Diethyl 5-(6-methoxy-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6d)

Yellow oil, Yield: 99% (43.7 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.62 (s, 1H), 8.59 (s, 1H), 7.38–7.33 (m, 2H), 7.20 (d, J = 7.8 Hz, 1H), 7.14 (t, J = 7.3 Hz, 1H), 6.99 (d, J = 3.9 Hz, 1H), 4.76 (d, J = 5.0 Hz, 1H), 4.54–4.50 (m, 1H), 4.29 (d, J = 7.1 Hz, 2H),

4.21 (s, 3H), 4.20–4.16 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.0, 168.2, 161.1, 152.5, 151.9, 147.9, 140.9, 129.2, 124.8, 121.3, 116.9, 83.2, 70.3, 62.7, 62.6, 57.8, 54.3, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₄N₅O₆⁺, 442.1721; found, 442.1734.

Diethyl 5-(6-(dimethylamino)-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6e)

Yellow oil, Yield: 85% (38.6 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (s, 1H), 8.37 (s, 1H), 7.32 (dd, J = 8.5, 7.4 Hz, 2H), 7.19 (d, J = 7.7 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 4.2 Hz, 1H), 4.77 (d, J = 4.9 Hz, 1H), 4.48 (t, J = 4.5 Hz, 1H), 4.29 (d, J = 7.0 Hz, 2H), 4.14 (d, J = 7.1 Hz, 2H), 3.54 (s, 6H), 1.30 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.2, 168.4, 154.9, 152.7, 150.6, 148.2, 136.7, 129.1, 124.5, 119.8, 116.7, 83.1, 70.4, 62.6, 62.5, 57.6, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₇N₆O₅⁺, 455.2037; found, 455.2040.

Diethyl 2-phenyl-5-(6-(piperidin-1-yl)-9H-purin-9-yl)isoxazolidine-3,4-dicarboxylate (6f)

Yellow oil, Yield: 83% (41.0 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.41 (s, 1H), 8.35 (s, 1H), 7.32 (dd, J = 8.6, 7.4 Hz, 2H), 7.22–7.18 (m, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 4.2 Hz, 1H), 4.77 (d, J = 5.0 Hz, 1H), 4.48 (t, J = 4.8 Hz, 1H), 4.35–4.28 (m, 3H), 4.26–4.25 (m, 3H), 4.14 (d, J = 7.1 Hz, 2H), 1.75–1.69 (m, 6H), 1.30 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.2, 168.4, 153.8, 152.8, 150.9, 148.1, 136.5, 129.1, 124.5, 119.4, 116.7, 83.0, 70.4, 62.6, 62.5, 57.6, 26.5, 24.8, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₁N₆O₅⁺, 495.2350; found, 495.2356.

Diethyl 2-phenyl-5-(6-phenyl-9H-purin-9-yl)isoxazolidine-3,4-dicarboxylate (6g)

Yellow oil, Yield: 79% (38.5 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 9.06 (s, 1H), 8.86 (s, 1H), 8.82–8.79 (m, 2H), 7.60–7.53 (m, 3H), 7.34 (dd, J = 8.5, 7.4 Hz, 2H), 7.22–7.18 (m, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 3.8 Hz, 1H), 4.77 (d, J = 5.0 Hz, 1H), 4.54 (dd, J = 5.0, 3.8 Hz, 1H), 4.29 (d, J = 7.1 Hz, 2H), 4.18 (d, J = 7.1 Hz, 2H), 1.29 (t, J = 7.2Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.0, 168.2, 155.1, 152.7, 147.8, 143.0, 135.4, 131.1, 130.8, 129.8, 129.2, 128.7, 125.0, 117.1, 83.1, 70.4, 62.7, 57.9, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₂₆N₅O₅⁺, 488.1928; found, 488.1936.

Diethyl 5-(2-amino-6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6h)

Yellow oil, Yield: 83% (38.3 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.47 (s, 1H), 7.32 (dd, J = 8.6, 7.4 Hz, 2H), 7.18 (d, J = 7.7 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 3.9 Hz, 1H), 5.33 (s, 2H), 4.69 (d, J = 5.2 Hz, 1H), 4.43 (dd, J = 5.1, 4.0 Hz, 1H), 4.29 (d, J = 7.1 Hz, 2H), 4.17 (d, J = 7.1 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.9, 168.2, 159.3, 153.7, 151.5, 147.7, 140.8, 129.2, 125.0, 124.9, 117.1, 82.8, 70.3, 62.8, 62.6, 57.5, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₂ClN₆O₅⁺, 461.1335; found, 461.1332.

3-Ethyl 4-methyl 5-(6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6i)

Yellow oil, Yield: 81% (35.0 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz), δ 8.88 (s, 1H), 8.80 (s, 1H), 7.34 (dd, J = 8.6, 7.4 Hz, 2H), 7.23–7.19 (m, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.03 (d, J = 3.4 Hz, 1H), 5.33 (s, 2H), 4.69 (d, J = 5.3 Hz, 1H), 4.52 (dd, J = 5.3, 3.4 Hz, 1H), 4.28 (d, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz), δ 168.7, 168.4, 152.3, 151.6, 151.3, 147.3, 144.0, 131.5, 129.2, 125.4, 117.6, 83.2, 70.1, 62.9, 58.0, 53.5, 13.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₉ClN₅O₅⁺, 432.1069; found, 432.1074.

(6k)

Yellow oil, Yield: 52% (23.1 mg); ¹H NMR (CDCl₃, 600 MHz) δ 8.93 (s, 1H), 8.76 (s, 1H), 7.36–7.34 (m, 2H), 7.17–7.13 (m, 3H), 6.59 (d, J = 2.4 Hz, 1H), 4.45–4.43 (m, 1H), 4.39–4.36 (m, 1H), 4.32–4.27 (m, 2H), 4.03 (d, J = 6.0 Hz, 1H), 3.75–3.71 (m, 1H), 1.99 (s, 3H), 1.28 (t, J = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 170.6, 169.2, 152.3, 151.6, 151.3, 147.8, 144.3, 131.5, 129.3, 125.2, 117.4, 83.7, 69.9, 62.8, 62.6, 55.0, 29.8, 20.6, 14.1 ppm; HRMS (ESI)

m/z: [M + H]⁺ Calcd for C₂₀H₂₁ClN₅O₅⁺, 446.1226; found, 446.1222.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(o-tolyl)isoxazolidine-3,4-dicarboxylate (6l)

Yellow oil, Yield: 56% (25.7 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.80 (s, 1H), 8.42 (s, 1H), 7.32 (dd, J = 7.8, 3.0 Hz, 1H), 7.17 (dd, J = 7.2, 1.8 Hz, 1H), 7.13–7.12 (m, 2H), 7.10–7.07 (m, 1H), 5.01–4.99 (m, 1H), 4.97–4.95 (m, 1H), 4.26–4.18 (m, 2H), 3.92–3.83 (m, 2H), 2.35 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 167.4, 166.7, 152.3, 151.8, 151.5, 144.4, 143.6, 132.1, 130.8, 129.6, 126.6, 126.3, 118.5, 83.4, 66.9, 62.3, 61.4, 56.2, 18.1, 14.0, 13.7 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃ClN₅O₅⁺, 460.1382; found, 460.1388.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(m-tolyl)isoxazolidine-3,4-dicarboxylate (6m)

Yellow oil, Yield: 84% (38.6 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (s, 1H), 8.80 (s, 1H), 7.24 (t, J = 7.7 Hz, 1H), 7.04 (d, J = 3.3 Hz, 1H), 7.03–6.97 (m, 3H), 4.67 (d, J = 5.4 Hz, 1H), 4.45 (dd, J = 5.4, 3.4 Hz, 1H), 4.35–4.28 (m, 2H), 4.21 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.9, 167.9, 152.3, 151.6, 151.2, 147.3, 144.1, 139.2, 131.4, 129.0, 126.2, 118.3, 114.6, 83.1, 70.2, 62.8, 62.7, 58.3, 21.5, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₃ClN₅O₅⁺, 460.1382; found, 460.1379.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(p-tolyl)isoxazolidine-3,4-dicarboxylate (6n)

Yellow oil, Yield: 88% (40.4 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (s, 1H), 8.79 (s, 1H), 7.18–7.11 (m, 4H), 7.03 (d, J = 3.2 Hz, 1H), 4.61 (d, J = 5.7 Hz, 1H), 4.44 (dd, J = 5.7, 3.3 Hz, 1H), 4.33–4.21 (m, 4H), 2.33 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.7, 168.0, 152.3, 151.6, 151.2, 144.7, 144.2, 135.7, 131.4, 129.7, 118.4, 83.1, 70.5, 62.7, 58.6, 20.8, 14.0, 14.0 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₃ClN₅O₅⁺, 460.1382; found, 460.1390. dr (endo-6q/exo-6q) = 9:1

Diethyl 5-(6-chloro-9*H*-purin-9-yl)-2-(2-chlorophenyl)isoxazolidine-3,4-dicarboxylate (*endo*-6q)

Yellow oil, Yield: 70% (33.7 mg), dr (*trans/cis*) = 9:1; $R_f = 0.31$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 600 MHz) δ 8.82 (s, 1H), 8.79 (s, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.20 (t, J = 1.8 Hz, 1H), 7.12–7.10 (m, 1H), 7.06–7.05 (m, 1H), 7.02 (d, J = 3.6 Hz, 1H), 4.71 (d, J = 4.8 Hz, 1H), 4.53–4.52 (m, 1H), 4.34–4.28 (m, 2H), 4.23 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 150 MHz) δ 168.6, 167.8, 152.4, 151.6, 151.4, 148.9, 143.9, 135.0, 131.6, 130.3, 125.1, 117.3, 115.1, 83.5, 70.0, 63.1, 63.0, 57.9, 14.0, 14.0 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀Cl₂N₅O₅⁺, 480.0836; found, 480.0830.

Diethyl 5-(6-chloro-9*H*-purin-9-yl)-2-(2-chlorophenyl)isoxazolidine-3,4-dicarboxylate (*exo*-6q)

Yellow oil, Yield: 8% (3.7 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 600 MHz) δ 8.69 (s, 1H), 8.35 (s, 1H), 7.16 (t, J = 8.4 Hz, 1H), 7.05 (d, J = 5.4 Hz, 1H), 7.02–6.98 (m, 2H), 6.87 (d, J = 10.2 Hz, 1H), 5.14–5.10 (m, 2H), 4.21 (q, J = 7.2 Hz, 2H), 4.16–4.09 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀Cl₂N₅O₅⁺, 480.0836; found, 480.0830.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(3-chlorophenyl)isoxazolidine-3,4-dicarboxylate (6r)

Yellow oil, Yield: 81% (38.8 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.74 (s, 1H), 8.73 (s, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 2.1 Hz, 1H), 7.08–7.04 (m, 1H), 7.01–6.98 (m, 1H), 6.94 (d, J = 3.5 Hz, 1H), 4.63 (d, J = 4.9 Hz, 1H), 4.43 (dd, J = 4.8, 3.6 Hz, 1H), 4.22 (m, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 167.5, 166.7, 151.4, 150.5, 150.3, 147.8, 142.8, 134.0, 130.5, 129.3, 124.0, 116.2, 114.0, 82.4, 68.9, 62.0, 61.9, 56.8, 12.9, 12.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀Cl₂N₅O₅⁺, 480.0836; found, 480.0833.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(4-chlorophenyl)isoxazolidine-3,4-dicarboxylate (6s)

Yellow oil, Yield: 86% (41.2 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.84 (s, 1H), 8.80 (s, 1H), 7.32 (d, J = 8.9 Hz, 1H), 7.14 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 3.4 Hz, 1H), 4.65 (d, J = 5.2 Hz, 1H), 4.49 (dd, J = 5.2, 3.4 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.22 (q, J =7.1 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.5, 167.8, 152.4, 151.6, 151.3, 146.0, 143.9, 131.5, 130.7, 129.3, 118.9, 83.3, 70.2, 63.0, 62.9, 58.0, 14.0, 13.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₀Cl₂N₅O₅⁺, 480.0836; found, 480.0833.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(4-fluorophenyl)isoxazolidine-3,4-dicarboxylate (6t)

Yellow oil, Yield: 78% (36.1 mg); ¹H NMR (CDCl₃, 600 MHz) δ 8.87 (s, 1H), 8.77 (s, 1H), 7.23–7.21 (m, 2H), 7.05–7.02 (m, 2H), 7.01 (d, J = 3.0 Hz, 1H), 4.53 (d, J = 6.0 Hz, 1H), 4.46–4.45 (m, 1H), 4.28–4.23 (m, 4H), 1.24 (td, J = 7.2, 4.8 Hz, 6H) ppm; ¹³C{¹H} NMR (CDCl₃, 150 MHz) δ 168.4, 168.0, 152.4, 151.7, 151.3, 144.1, 131.5, 120.9, 120.9, 116.1, 116.0, 83.1, 70.9, 62.9, 62.9, 58.6, 14.1, 14.0 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀ClFN₅O₅⁺, 464.1132; found, 464.1137.

Diethyl 5-(6-chloro-9H-purin-9-yl)-2-(pyridin-2-yl)isoxazolidine-3,4-dicarboxylate (6u)

Yellow oil, Yield: 74% (33.0 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.84 (s, 1H), 8.80 (s, 1H), 8.27 (dq, J = 4.9, 0.8 Hz, 1H), 7.73–7.68 (m, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.02 (ddd, J = 7.3, 4.9, 0.8 Hz, 1H), 6.99 (d, J = 4.1 Hz, 1H), 5.64 (d, J = 4.2 Hz, 1H), 4.49 (dd, J = 5.2, 3.4 Hz, 1H), 4.44–4.37 (m, 2H), 4.24–4.14 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.8, 168.1, 159.1, 152.5, 151.7, 151.4, 147.5, 144.0, 138.6, 131.5, 119.5, 111.0, 84.1, 66.1, 62.7, 62.6, 56.2, 14.1, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₀ClN₆O₅⁺, 447.1178; found, 447.1174.

Diethyl 5-(6-chloro-9*H*-purin-9-yl)-2-(3,4-dimethylphenyl)isoxazolidine-3,4-dicarboxylate (6v)

Yellow oil, Yield: 70% (33.1 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (s, 1H), 8.79 (s, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.02 (d, J = 3.2 Hz, 1H), 7.01 (s, 1H), 6.95 (dd, J = 8.1, 2.4 Hz, 1H), 4.58 (d, J = 5.9 Hz, 1H), 4.42 (dd, J = 5.9, 3.2 Hz, 1H), 4.33–4.27 (m, 2H), 4.23 (q, J = 7.1 Hz, 2H), 2.25 (s, 3H), 2.23 (s, 3H), 1.31–1.23 (m, 6H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.7, 168.0, 152.3, 151.6, 151.2, 144.8, 144.2, 137.6, 134.5, 131.4, 130.1, 119.9, 115.8, 83.0, 70.3, 62.7, 62.7, 58.8, 14.0, 14.0 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₅ClN₅O₅⁺, 474.1539; found, 474.1535.

Diethyl 5-(6-chloro-9*H*-purin-9-yl)-2-(3,5-dichlorophenyl)isoxazolidine-3,4-dicarboxylate (6w)

Yellow oil, Yield: 68% (34.9 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.81 (s, 1H), 8.75 (s, 1H), 7.13 (t, J = 1.7 Hz, 1H), 7.07 (d, J = 1.7 Hz, 2H), 6.98 (d, J = 3.5 Hz, 1H), 4.71 (d, J = 4.6 Hz, 1H), 4.54 (dd, J = 4.5, 3.8 Hz, 1H), 4.38–4.30 (m, 2H), 4.23 (q, J = 7.1Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.3, 167.5, 152.5, 151.5, 151.5, 149.6, 143.6, 135.7, 131.6, 124.6, 115.1, 83.6, 69.5, 63.2, 63.1, 57.5, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₉Cl₃N₅O₅⁺, 514.0446; found, 514.0443.

4-Ethyl 3-methyl 5-(6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6x)

Yellow oil, Yield: 81% (35.0 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.86 (s, 1H), 8.80 (s, 1H), 7.39–7.34 (m, 2H), 7.19 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 3.5 Hz, 1H), 4.78 (d, J = 5.0 Hz, 1H), 4.49 (dd, J = 5.0, 3.7 Hz, 1H), 4.19 (q, J = 7.1Hz, 2H), 3.87 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.4, 167.8, 152.4, 151.6, 151.3, 147.4, 144.0, 131.5, 129.3, 125.3, 117.2, 83.4, 70.1, 62.8, 58.0, 53.6, 13.9 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₉ClN₅O₅⁺, 432.1069; found, 432.1065.

3-(tert-Butyl) 4-ethyl 5-(6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (6y)

Yellow oil, Yield: 62% (29.3 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (s, 1H), 8.80 (s, 1H), 7.34 (dd, J = 8.6, 7.4 Hz, 2H), 7.23–7.20 (m, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 3.2 Hz, 1H), 4.51 (d, J = 5.6 Hz, 1H), 4.41 (dd, J = 5.6, 3.2 Hz, 1H), 4.21 (q, J =7.2 Hz, 2H), 1.47 (s, 9H), 1.24 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.1, 167.6, 152.3, 151.6, 151.2, 147.5, 144.2, 131.4, 129.1, 125.4, 117.9, 84.0, 83.0, 71.2, 62.7, 58.4, 27.8, 14.0 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₅ClN₅O₅⁺, 474.1539; found, 474.1535.

Ethyl 3-benzoyl-5-(6-chloro-9H-purin-9-yl)-2-phenylisoxazolidine-4-carboxylate (6z)

Yellow oil, Yield: 59% (28.2 mg); $R_f = 0.3$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 9.03 (s, 1H), 8.78 (s, 1H), 8.04 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.52–7.47 (m, 2H), 7.39–7.34 (m, 2H), 7.24 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.3 Hz, 1H), 7.07 (d, J = 4.2 Hz, 1H), 5.83 (d, J = 4.1 Hz, 1H), 4.68 (t, J = 4.1 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 1.12 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 194.2, 168.6, 152.4, 151.2, 147.1, 144.4, 134.7, 134.4, 131.4, 129.5, 129.3, 128.9, 125.1, 116.7, 83.4, 71.2, 62.7, 56.4, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₁ClN₅O₄⁺, 478.1277; found, 478.1264.

6. Characterization data of products 8

Diethyl 5-(1*H*-benzo[*d*]imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8a)

Yellow oil, Yield: 84% (34.4 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.38 (s, 1H), 7.86–7.83 (m, 1H), 7.71 (d, J = 7.1 Hz, 1H), 7.40–7.32 (m, 4H), 7.20 (d, J = 7.9 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 5.3 Hz, 1H), 4.84 (d, J = 5.2 Hz, 1H), 4.47 (t, J = 1.3 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.0, 168.4, 148.3, 144.0, 141.6, 132.5, 129.3, 124.4, 123.7, 123.0, 120.7, 116.1, 110.5, 85.5, 70.4, 62.8, 62.6, 56.5, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₄N₃O₅⁺, 410.1710; found, 410.1716.

Diethyl 5-(2-chloro-1*H*-benzo[*d*]imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8b)

Yellow oil, Yield: 73% (32.3 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.10–8.07 (m, 1H), 7.75–7.72 (m, 1H), 7.41–7.33 (m, 4H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 4.88 (d, *J* = 6.7 Hz, 1H), 4.75 (t, *J* = 7.2 Hz, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 4.19–4.09 (m, 2H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.2, 168.0, 148.9, 142.1, 140.1, 132.4, 129.5, 124.2, 124.1, 123.8, 119.8, 115.4, 112.5, 86.0, 70.6, 62.8, 62.6, 53.5, 14.1, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₃ClN₃O₅⁺, 444.1321; found, 444.1312.

Diethyl 5-(5-chloro-1*H*-benzo[*d*]imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8c)

Yellow oil, Yield: 83% (36.8 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.38 (s, 1H), 7.82 (d, J = 1.8 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.39–7.35 (m, 2H), 7.35–7.32 (m, 1H), 7.22–7.19 (m, 2H), 7.14 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 5.1 Hz, 1H), 4.80 (d, J = 5.4 Hz, 1H), 4.43 (t, J = 4.1 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.9, 168.3, 148.0, 144.8, 142.9, 131.1, 129.3, 128.7, 124.2, 120.4, 116.4, 111.5, 85.5, 70.3, 62.8, 62.7, 56.7, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₃ClN₃O₅⁺, 444.1321; found, 444.1313.

Diethyl 5-(5,6-dimethyl-1*H*-benzo[*d*]imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8d)

Yellow oil, Yield: 73% (31.9 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.23 (s, 1H), 7.59 (s, 1H), 7.47 (s, 1H), 7.34 (dd, J = 8.7, 7.4 Hz, 2H), 7.22–7.19 (m, 2H), 7.12 (t, J = 7.4 Hz, 1H), 6.55 (d, J = 5.5 Hz, 1H), 4.85 (d, J = 5.3 Hz, 1H), 4.47 (t, J = 5.4 Hz, 1H), 4.38–4.31 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.39 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.1, 168.6, 148.5, 142.6, 140.9, 132.9, 131.9, 131.0, 129.3, 124.2, 120.6, 115.9, 110.7, 85.6, 70.3, 62.7, 62.5, 56.2, 20.6, 20.2, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₈N₃O₅⁺, 438.2023; found, 438.2026.

Diethyl 2-phenyl-5-(2-phenyl-1*H*-imidazol-1-yl)isoxazolidine-3,4-dicarboxylate (8e)

Yellow oil, Yield: 79% (34.4 mg); $R_f = 0.30$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, J = 1.5 Hz, 1H), 7.67–7.64 (m, 2H), 7.48–7.45 (m, 3H), 7.26 (dd, J = 8.7, 7.4 Hz, 2H), 7.22 (d, J = 1.1 Hz, 1H), 7.12–7.08 (m, 2H), 7.04 (d, J = 7.4 Hz, 1H), 6.42 (d, J = 5.1 Hz, 1H), 4.77 (d, J = 4.8 Hz, 1H), 4.38–4.31 (m, 3H), 4.04–3.98 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 100 MHz) δ 169.3, 168.5, 149.2, 148.0, 129.9, 129.4, 129.1, 128.6, 124.3, 118.1, 116.2, 85.6, 70.5, 62.7, 62.3, 57.2, 14.0, 13.7 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₆N₃O₅⁺, 436.1867; found, 436.1868.

Diethyl 5-(4,5-diphenyl-1H-imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8f)

Yellow oil, Yield: 74% (37.9 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (s, 1H), 7.45–7.41 (m, 3H), 7.41 (d, J = 2.8 Hz, 2H), 7.38–7.34 (m, 2H), 7.16–7.11 (m, 4H), 7.10–7.06 (m, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 7.7 Hz, 2H), 5.96 (d, J = 5.2 Hz, 1H), 4.65 (d, J = 4.7 Hz, 1H), 4.35 (t, J = 4.9 Hz, 1H), 4.30–4.23 (m, 2H), 3.92 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 100 MHz) δ 169.0, 168.4, 148.0, 138.2, 135.5, 134.0, 131.3, 129.7, 129.2, 129.0, 128.6, 128.1, 126.7, 126.6, 124.2, 116.1, 84.2, 70.8, 62.8, 62.3, 56.8, 14.1, 13.8 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₀H₃₀N₃O₅⁺, 512.2180; found, 512.2183.

Diethyl 5-(4-nitro-1H-imidazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8g)

Yellow oil, Yield: 89% (36.0 mg); $R_f = 0.20$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (d, J = 1.6 Hz, 1H), 7.39–7.34 (m, 2H), 7.21–7.18 (m, 2H), 7.18–7.17 (m, 1H), 6.45 (d, J = 3.6 Hz, 1H), 6.42 (d, J = 5.1 Hz, 1H), 4.61 (d, J = 5.6 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.28–4.20 (m, 3H), 1.31 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C {¹H} NMR (CDCl₃, 100 MHz) δ 168.4, 167.7, 146.9, 135.4, 129.3, 125.7, 118.1, 117.7, 86.4, 70.2, 63.0, 59.1, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₁N₄O₇⁺, 405.1405; found, 405.1407.

Diethyl 5-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8h)

Yellow oil, Yield: 98% (40.2 mg); $R_f = 0.25$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.60–7.55 (m, 1H), 7.32 (dd, J = 8.7, 7.4 Hz, 2H), 7.23–7.19 (m, 2H), 7.12 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 4.5 Hz, 1H), 7.03–6.97 (m, 3H), 5.14 (dd, J = 5.6, 4.5 Hz, 1H), 4.85 (d, J = 5.6 Hz, 1H), 4.39–4.30 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 168.6, 168.4, 148.3, 146.8, 132.0, 129.1, 128.3, 124.6, 124.6, 120.2, 116.7, 111.0, 87.6, 70.3, 62.6, 62.6, 55.8, 14.0, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₃N₄O₅⁺, 411.1663; found, 411.1667.

Diethyl 5-(1H-indol-1-yl)-2-phenylisoxazolidine-3,4-dicarboxylate (8i)

Yellow oil, Yield: 71% (29.0 mg); $R_f = 0.35$ (PE/EA = 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz) δ 7.63 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 3.4 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.33 (dd, J = 8.6, 7.4 Hz, 2H), 7.29–7.26 (m, 1H), 7.21–7.17 (m, 3H), 7.08 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 6.2 Hz, 1H), 6.64 (d, J = 3.4 Hz, 1H), 4.93 (d, J = 4.7 Hz, 1H), 4.41 (dd, J = 6.2, 4.8 Hz, 1H), 4.45–4.32 (m, 2H), 4.13–4.04 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 169.7, 169.1, 149.2, 136.2, 129.3, 129.2, 125.0, 123.5, 122.4, 121.2, 120.7, 115.0, 109.6, 104.7, 86.4, 70.6, 62.6, 62.2, 55.8, 14.1, 13.9 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₅N₂O₅⁺, 409.1758; found, 409.1762.

7. Characterization data of products 11

Yellow oil, 16.7 mg, 57% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 5.4 Hz, 2H), 4.36–4.30 (m, 2H), 4.21 (dd, J = 9.3, 3.0 Hz, 2H), 2.83–2.75 (m, 2H), 2.41–2.32 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ

172.4, 169.2, 149.0, 127.8, 127.5, 122.4, 114.9, 112.9, 93.4, 65.6, 60.9, 37.4, 26.6, 13.1, 7.6 ppm; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₀NO₅⁺, 294.1336; found, 294.1341.

Ethyl 5-(cyclohexyloxy)-2-phenylisoxazolidine-3-carboxylate (11b)

Yellow oil, 16.2 mg, 51% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.27–7.25 (m, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.99 (t, J = 7.2, 1H), 5.59 (dd, J = 5.4, 1.2), 4.36-4.30 (m, 1H), 4.29-4.24 (m, 1H), 4.20 (dd, J = 6, 2.4, 1H), 3.75-3.71(m, 1H), 2.68-2.65(m, 1H), 2.52-2.48(m, 1H), 1.92-1.91(m, 2H), 1.73-1.71(m, 2H), 1.53-1.51 (m, 1H), 1.43-1.37 (m, 1H), 1.33 (t, J = 14.4, 3H), 1.30-1.26(m, 3H), 1.23-1.91(m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 170.9, 151.1, 128.7, 122.5, 115.5, 98.8, 67.3, 61.6, 61.6, 38.4, 33.3, 31.4, 25.7, 24.0, 23.9, 14.27 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C₁₈H₂₆NO₄⁺, 320.1856; found, 320.1851.

8. References

 (a) Shi, T.; Teng, S.; Wei, Y.; Guo, X.; Hu, W. Synthesis of Spiro[2,3-dihydrofuran-3,3'-oxindole] Derivatives via a Multi-component Cascade Reaction of α-Diazo Esters, Water, Isatins and Malononitrile/Ethyl Cyanoacetate. *Green Chem.* **2019**, *21*, 4936. (b) Gallo, R. D. C.; Burtoloso, A. C. B. Silica-supported HClO₄ Promotes Catalytic Solvent- and Metal-Free O-H Insertion Reactions with Diazo Compounds. *Green Chem.* **2018**, *20*, 4547.

(2) Synthesis of nitrosoarenes, See: (a) Priewisch, B.; Rück-Braun, K. Efficient Preparation of Nitrosoarenes for the Synthesis of Azobenzenes. *J. Org. Chem.* **2005**, *70*, 2350. (b) Hu, W.; Yu, J.-T.; Liu, S.; Jiang, Y.; Cheng, J. Copper-mediated Annulation of 2-(1-Arylvinyl) Anilines and Aryl Nitrosos towards 2,3-Diaryl-2H-indazoles. *Org. Chem. Front.* **2017**, *4*, 22. (c) Wang, Q.; Li, X. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis. *Org. Lett.* **2016**, *18*, 2102.

(3) (a) Buslov, I.; Hu, X. Transition-Metal-Free Intermolecular α-C-H Amination of Ethers at Room Temperature. Adv. Synth. Catal. 2014, 356, 3325. (b) Xie, M.-S.; Zhou, P.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Enantioselective Intermolecular Cyclopropanations for the Synthesis of Chiral Pyrimidine Carbocyclic Nucleosides. Org. Lett. 2016, 18, 4344.

(4) (a) Yang, Q.-L.; Xie, M.-S.; Xia, C.; Sun, H.-L.; Zhang, D.-J.; Huang, K.-X.; Guo, Z.; Qu, G.-R.; Guo, H.-M. A Rapid and Divergent access to Chiral Azacyclic Nucleoside Analogues via Highly Enantioselective 1,3-Dipolar Cycloaddition of β-Nucleobase Substituted Acrylates. *Chem. Commun.* 2014, *50*, 14809. (b) Gao, Y.-W.; Niu, H.-Y.; Zhang, Q.-Y.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Regio- and Enantioselective [3+2] Cycloaddition of

α-Purine Substituted Acrylates with Allenes: An Approach to Chiral Carbocyclic Nucleosides. *Adv. Synth. Catal.* **2018**, *360*, 2813. (c) Huang, K.-X.; Xie, M.-S.; Zhao, G.-F.; Qu, G.-R.; Guo, H.-M. Synthesis of Chiral Cyclopropyl Carbocyclic Purine Nucleosides via Asymmetric Intramolecular Cyclopropanations Catalyzed by a Chiral Ruthenium(II) Complex. *Adv. Synth. Catal.* **2016**, *358*, 3627. (d) Wei, T.; Xie, M.-S.; Qu, G.-R.; Niu, H.-Y.; Guo, H.-M. A New Strategy To Construct Acyclic Nucleosides via Ag(I)-Catalyzed Addition of Pronucleophiles to 9-Allenyl-9*H*-Purines. *Org. Lett.* **2014**, *16*, 900.

9. ¹H-NMR and ¹³C-NMR spectra of substrate 3g

3g

10. ¹H- and ¹³C-NMR spectra of products 4

4a

4b

4c

4d

4e

4f

4g

4h

$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$

4k

cis-4n

8.060 8.058 7.439 7.439 7.404 7.1318 7.1318 7.1318 7.171 7.171

 $\begin{array}{c} 4.379\\ 4.376\\ 4.376\\ 4.354\\ 4.178\\ 4.178\\ 4.142\\ 4.142\\ 2.319\\ 2.319\\ 2.2808\\ \hline 2.2808\\ \hline 2.2808\\ \hline -1.982\\ -1.982\\ \hline -1.006\\ \hline 1.109\end{array}$

4p

4q

 $\begin{array}{c} \mathbb{Z}^{7.862} \\ \mathbb{Z}^{7.860} \\ \mathbb{Z}^{7.052} \\ \mathbb{Z}^{7.052} \\ \mathbb{Z}^{7.052} \\ \mathbb{Z}^{6.492} \\ \mathbb{G}.473 \\ \mathbb{G}.473 \end{array}$

 $\begin{array}{c} +2.86\\ +2.74\\ +2.74\\ +2.76\\ +2.76\\ +1.63\\ +1.64\\ +1.64\\ +1.64\\ +1.64\\ +1.64\\ +1.64\\ +1.64\\ +1.64\\ +1.61\\ +1$

4s

4t

4u

4v

4w

11. ¹H- and ¹³C-NMR spectra of products 6

6a

6b

6c

6d

6e

S52

6f

NAME	2017-03-16 tyut	t-lx-
EXPNO	10	
PROCNO	1	
Date	20170317	
Time	3.52	
INSTRUM	spect	
PROBHD	5 mm PABBO BB/	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	8012.820	Hz
FIDRES	0.122266	Hz
AQ	4.0894966	sec
RG	34.32	
DW	62.400	usec
DE	6.50	usec
TE	295.7	K
D1	1.00000000	sec
TDO	1	
	CHANNEL fl ====	
SF01	400.1324710	MHz
NUC1	1H	
P1	9.70	usec
SI	65536	
SF	400.1300047	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

6g

6h

6i

6k

61

6m

6n

endo-6q

exo-6q

6r

S62

6t

6u

6v

S66

12. ¹H-NMR and ¹³C-NMR spectra of products 8

8c

8e

8f

8g

8h

13. ¹H-NMR and ¹³C-NMR spectra of products 11

S82