Synergistic Effects of Steric Constraints and Non-covalent Interactions in Copper(II) Chloro-Nitro-Benzoato Complexes: Synthesis, Structural Characterization, Theoretical Investigations, Antimicrobial Studies, and Molecular Docking Analyses

#### Chetan Chauhan,<sup>a</sup> Santosh Kumar,<sup>a\*</sup> Rajesh Kumar,<sup>a</sup> Anju Saini,<sup>b</sup> Thammarat Aree,<sup>c\*</sup>

<sup>a</sup> Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.

<sup>b</sup>YDoS, Punjabi University G K Campus, T. Sabo, Punjab, India.

<sup>c</sup> Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

Corresponding Author Email: <u>santosh.chem88@gmail.com</u> (S.Kumar), <u>thammarat.aree@gmail.com</u> (T. Aree)

#### **Supplementary Information**



Figure S1: UV spectra of complexes 1-3



Figure S2 Experimental FT-IR spectra of complexes 1-3



Figure S3: Theoretical elucidation of FT-IR from DFT calculations for complexes 1-3.







Figure S5: Phytotoxicity assessment: seed germination assay of *Vigna radiata* with Complexes 1-3.

| Atom                  | Atom            | Length/Å | Atom | Atom | Length/Å |
|-----------------------|-----------------|----------|------|------|----------|
| Cu1                   | O1 <sup>1</sup> | 2.402(2) | 05   | N2   | 1.217(3) |
| Cu1                   | 01              | 2.402(2) | N1   | C2   | 1.472(4) |
| Cu1                   | O21             | 2.061(2) | N2   | C7   | 1.483(4) |
| Cu1                   | O2              | 2.061(2) | C1   | C2   | 1.494(5) |
| Cu1                   | $N1^1$          | 1.983(2) | C3   | C4   | 1.512(4) |
| Cu1                   | N1              | 1.983(2) | C4   | C5   | 1.401(4) |
| C11                   | C5              | 1.738(3) | C4   | C9   | 1.393(4) |
| 01                    | C1              | 1.427(4) | C5   | C6   | 1.377(4) |
| O2                    | C3              | 1.271(3) | C6   | C7   | 1.389(4) |
| 03                    | C3              | 1.236(4) | C7   | C8   | 1.370(4) |
| 04                    | N2              | 1.210(3) | C8   | C9   | 1.378(4) |
| <sup>1</sup> -X,1-Y,2 | -Z              |          |      |      |          |

Table S1 (a) Bond Lengths for Complex 1.

### Table S2 (b) Bond Angles for Complex 1.

| Atom            | Atom | Atom            | Angle/°   | Atom | Atom | Atom | Angle/°  |
|-----------------|------|-----------------|-----------|------|------|------|----------|
| 01              | Cu1  | 011             | 180.00(9) | O4   | N2   | C7   | 118.8(3) |
| O2              | Cu1  | O1 <sup>1</sup> | 86.33(7)  | 05   | N2   | C7   | 117.7(3) |
| O2 <sup>1</sup> | Cu1  | O1 <sup>1</sup> | 93.67(7)  | 01   | C1   | C2   | 112.1(3) |

| Atom                   | Atom | Atom            | Angle/°    | Atom | Atom | Atom | Angle/°  |
|------------------------|------|-----------------|------------|------|------|------|----------|
| 02                     | Cu1  | 01              | 93.67(7)   | N1   | C2   | C1   | 110.8(3) |
| O21                    | Cu1  | 01              | 86.33(7)   | O2   | C3   | C4   | 116.9(3) |
| O2                     | Cu1  | O2 <sup>1</sup> | 180.0      | O3   | C3   | O2   | 126.3(3) |
| $N1^1$                 | Cu1  | O1 <sup>1</sup> | 80.24(9)   | O3   | C3   | C4   | 116.8(3) |
| N1                     | Cu1  | 01              | 80.24(9)   | C5   | C4   | C3   | 124.6(3) |
| $N1^1$                 | Cu1  | 01              | 99.76(9)   | C9   | C4   | C3   | 117.9(3) |
| N1                     | Cu1  | O1 <sup>1</sup> | 99.76(9)   | C9   | C4   | C5   | 117.5(3) |
| N1                     | Cu1  | O2 <sup>1</sup> | 88.82(9)   | C4   | C5   | C11  | 121.0(2) |
| $N1^1$                 | Cu1  | O2 <sup>1</sup> | 91.18(9)   | C6   | C5   | C11  | 117.1(2) |
| $N1^1$                 | Cu1  | O2              | 88.82(9)   | C6   | C5   | C4   | 121.7(3) |
| N1                     | Cu1  | O2              | 91.18(9)   | C5   | C6   | C7   | 117.9(3) |
| $N1^1$                 | Cu1  | N1              | 180.00(9)  | C6   | C7   | N2   | 118.1(3) |
| C1                     | 01   | Cu1             | 102.10(17) | C8   | C7   | N2   | 119.2(3) |
| C3                     | O2   | Cu1             | 126.6(2)   | C8   | C7   | C6   | 122.7(3) |
| C2                     | N1   | Cu1             | 111.86(19) | C7   | C8   | C9   | 118.1(3) |
| O4                     | N2   | O5              | 123.6(3)   | C8   | C9   | C4   | 122.0(3) |
| <sup>1</sup> -X,1-Y,2- | Z    |                 |            |      |      |      |          |

Table S2 (a) Bond Lengths for Complex 2

| Atom                  | Atom            | Length/Å   | Atom | n Atom | Length/Å |
|-----------------------|-----------------|------------|------|--------|----------|
| Cu1                   | $N1^1$          | 2.0245(17) | N3   | C10    | 1.467(3) |
| Cu1                   | N1              | 2.0245(17) | C1   | C2     | 1.514(3) |
| Cu1                   | N2              | 2.0373(17) | C3   | C4     | 1.507(3) |
| Cu1                   | N2 <sup>1</sup> | 2.0373(17) | C5   | C6     | 1.523(3) |
| 01                    | C4              | 1.420(3)   | C6   | C7     | 1.382(3) |
| O2                    | C5              | 1.242(3)   | C6   | C11    | 1.394(3) |
| 03                    | C5              | 1.243(3)   | C7   | C8     | 1.391(3) |
| O4                    | N3              | 1.209(3)   | C7   | C11    | 1.737(2) |
| 05                    | N3              | 1.226(3)   | C8   | C9     | 1.375(4) |
| N1                    | C1              | 1.480(3)   | C9   | C10    | 1.366(4) |
| N2                    | C2              | 1.482(3)   | C10  | C11    | 1.379(3) |
| N2                    | C3              | 1.480(3)   |      |        |          |
| <sup>1</sup> -X,1-Y,1 | -Z              |            |      |        |          |

## Table S2(b) Bond Angles for Complex 2.

| Atom            | Atom | Atom            | Angle/°    | Aton | n Ator | n Atom | Angle/°    |
|-----------------|------|-----------------|------------|------|--------|--------|------------|
| N1 <sup>1</sup> | Cu1  | N1              | 180.0      | 01   | C4     | C3     | 111.72(18) |
| N1              | Cu1  | N2 <sup>1</sup> | 94.31(7)   | O2   | C5     | 03     | 127.3(2)   |
| $N1^1$          | Cu1  | N2 <sup>1</sup> | 85.69(7)   | O2   | C5     | C6     | 117.8(2)   |
| $N1^1$          | Cu1  | N2              | 94.31(7)   | 03   | C5     | C6     | 114.9(2)   |
| N1              | Cu1  | N2              | 85.69(7)   | C7   | C6     | C5     | 125.0(2)   |
| N2              | Cu1  | N2 <sup>1</sup> | 180.0      | C7   | C6     | C11    | 117.3(2)   |
| C1              | N1   | Cu1             | 109.45(13) | C11  | C6     | C5     | 117.7(2)   |

| Atom                  | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|-----------------------|------|------|------------|------|------|------|------------|
| C2                    | N2   | Cu1  | 106.96(13) | C6   | C7   | C8   | 122.3(2)   |
| C3                    | N2   | Cu1  | 111.63(13) | C6   | C7   | Cl1  | 121.03(18) |
| C3                    | N2   | C2   | 115.99(18) | C8   | C7   | Cl1  | 116.65(19) |
| O4                    | N3   | O5   | 123.4(2)   | C9   | C8   | C7   | 119.4(2)   |
| O4                    | N3   | C10  | 119.0(2)   | C10  | C9   | C8   | 118.7(2)   |
| O5                    | N3   | C10  | 117.6(2)   | C9   | C10  | N3   | 118.8(2)   |
| N1                    | C1   | C2   | 108.55(18) | C9   | C10  | C11  | 122.4(2)   |
| N2                    | C2   | C1   | 111.07(17) | C11  | C10  | N3   | 118.8(2)   |
| N2                    | C3   | C4   | 113.57(17) | C10  | C11  | C6   | 119.8(2)   |
| <sup>1</sup> -X,1-Y,1 | -Z   |      |            |      |      |      |            |

## Table S3 (a) Bond Lengths for Complex 3.

| Atom                  | Atom   | Length/Å | Atom | <b>Atom</b> | Length/Å |
|-----------------------|--------|----------|------|-------------|----------|
| Cu1                   | $N1^1$ | 2.035(3) | N2   | C1          | 1.488(5) |
| Cu1                   | N1     | 2.035(3) | N3   | C9          | 1.473(5) |
| Cul                   | N2     | 2.025(3) | C1   | C2          | 1.512(6) |
| Cul                   | N21    | 2.025(3) | C3   | C4          | 1.522(5) |
| Cl1                   | C7     | 1.749(4) | C5   | C6          | 1.517(5) |
| 01                    | C4     | 1.400(5) | C6   | C7          | 1.379(5) |
| O2                    | C5     | 1.232(4) | C6   | C11         | 1.389(5) |
| 03                    | C5     | 1.260(4) | C7   | C8          | 1.382(5) |
| O4                    | N3     | 1.205(5) | C8   | С9          | 1.367(5) |
| 05                    | N3     | 1.224(5) | C9   | C10         | 1.371(5) |
| N1                    | C2     | 1.473(4) | C10  | C11         | 1.394(5) |
| N1                    | C3     | 1.479(4) |      |             |          |
| <sup>1</sup> 2-X,-Y,1 | -Z     |          |      |             |          |

# Table S3 (b) Bond Angles for Complex 3.

| Atom            | Atom | Atom   | Angle/°    | Atom | Atom | Atom | Angle/°  |
|-----------------|------|--------|------------|------|------|------|----------|
| N1 <sup>1</sup> | Cu1  | N1     | 180.0      | 01   | C4   | C3   | 107.7(3) |
| N2 <sup>1</sup> | Cu1  | N1     | 94.64(12)  | 02   | C5   | 03   | 126.7(3) |
| N2              | Cu1  | $N1^1$ | 94.64(12)  | O2   | C5   | C6   | 117.7(3) |
| N2 <sup>1</sup> | Cu1  | $N1^1$ | 85.36(12)  | O3   | C5   | C6   | 115.6(3) |
| N2              | Cu1  | N1     | 85.36(12)  | C7   | C6   | C5   | 123.0(3) |
| N2              | Cu1  | N21    | 180.00(11) | C7   | C6   | C11  | 117.9(3) |
| C2              | N1   | Cu1    | 106.1(2)   | C11  | C6   | C5   | 119.0(3) |
| C2              | N1   | C3     | 113.9(3)   | C6   | C7   | Cl1  | 119.7(3) |
| C3              | N1   | Cul    | 114.7(2)   | C6   | C7   | C8   | 122.5(3) |
| C1              | N2   | Cul    | 109.1(2)   | C8   | C7   | Cl1  | 117.9(3) |
| O4              | N3   | 05     | 123.5(4)   | C9   | C8   | C7   | 117.8(4) |
| O4              | N3   | C9     | 118.9(4)   | C8   | C9   | N3   | 118.5(4) |
| O5              | N3   | С9     | 117.7(4)   | C8   | C9   | C10  | 122.5(3) |
| N2              | C1   | C2     | 108.5(3)   | C10  | C9   | N3   | 119.1(3) |

| Atom                   | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°  |
|------------------------|------|------|----------|------|------|------|----------|
| N1                     | C2   | C1   | 109.4(3) | С9   | C10  | C11  | 118.5(3) |
| N1                     | C3   | C4   | 113.5(3) | C6   | C11  | C10  | 120.8(4) |
| <sup>1</sup> 2-X,-Y,1- | Z    |      |          |      |      |      |          |

### Table S4: Hydrogen Bonding parameter for Complexes 1-3

| Complex 1                   |                               |                              |                                      |          |
|-----------------------------|-------------------------------|------------------------------|--------------------------------------|----------|
| D-HA                        | d(D-H)                        | d(HA)                        | <d-ha< td=""><td>d(D-A)</td></d-ha<> | d(D-A)   |
| 01-H103                     | 0.820                         | 1.844                        | 170.07                               | 2.655    |
| N1-H1BO2 <sup>a</sup>       | 0.890                         | 2.292                        | 150.51                               | 3.097    |
| C1-H1CCl1 <sup>b</sup>      | 0.970                         | 2.922                        | 158.79                               | 3.842    |
| C2-H2BO4°                   | 0.970                         | 2.528                        | 131.72                               | 3.255    |
| a= -x+1, -y+1, -z+2; b      | b = -x, -y+1, -z+2; c =       | -x+1, y+1/2, -z+3/2          |                                      |          |
|                             |                               |                              |                                      |          |
| Complex 2                   |                               |                              |                                      |          |
| O1-H1O3ª                    | 0.82                          | 1.80                         | 172                                  | 2.618(2) |
| N1-H1AO2 <sup>b</sup>       | 0.89                          | 2.24                         | 159                                  | 3.081(3) |
| N1-H1BO2°                   | 0.89                          | 2.28                         | 149                                  | 3.078(2) |
| N2-H2Cl1 <sup>d</sup>       | 0.98                          | 2.81                         | 138                                  | 3.606(8) |
| N2-H2O2 <sup>d</sup>        | 0.98                          | 2.29                         | 144                                  | 3.135(3) |
| C1-H1CO1 <sup>e</sup>       | 0.97                          | 2.59                         | 161                                  | 3.519(3) |
| C3-H3AO5 <sup>f</sup>       | 0.97                          | 2.43                         | 135                                  | 3.188(3) |
| C8-H8O4 <sup>g</sup>        | 0.93                          | 2.39                         | 143                                  | 3.185(4) |
| a = x, y, -1+z; b = -x, 1-y | y, 1-z; c = -1+x, y, z; d =   | = 1-x, 1-y, 1-z; e = -x, 2-y | ,1-z; $f = x, y, -1+z; g =$          | 1+x,y,z  |
|                             |                               |                              |                                      |          |
| Complex 3                   |                               |                              |                                      |          |
| O1-H1O3ª                    | 0.82                          | 1.95                         | 169                                  | 2.763(4) |
| N1-H1A01                    | 0.98                          | 2.55                         | 105                                  | 2.963(4) |
| N1-H1AO3 <sup>b</sup>       | 0.98                          | 2.11                         | 141                                  | 2.935(5) |
| N2-H2AO2°                   | 0.89                          | 2.28                         | 156                                  | 3.112(4) |
| N2-H2BO3                    | 0.89                          | 2.48                         | 137                                  | 3.193(4) |
| C11-H11O1 <sup>d</sup>      | 0.93                          | 2.41                         | 168                                  | 3.329(5) |
| a = x, 1/2-y, -1/2+z; b =   | = $2-x, -y, 1-z; c = x, -1+y$ | y,z; d = 2-x, 1-y, 1-z       |                                      |          |

### Table S5: Comparative analysis of experimental and theoretical vibrational mode

frequencies of complexes 1-3.

|                       | COMPLEX 1                              |                                      | COMPI                                  | LEX 2                                | COMPLEX 3                              |                                      |
|-----------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|
| Assignments           | Experimental<br>IR (cm <sup>-1</sup> ) | Calculated<br>(B3LYP/6-<br>311G(d,p) | Experimental<br>IR (cm <sup>-1</sup> ) | Calculated<br>(B3LYP/6-<br>311G(d,p) | Experimental<br>IR (cm <sup>-1</sup> ) | Calculated<br>(B3LYP/6-<br>311G(d,p) |
| sp3 (CH)              | 3328                                   | 3467                                 | 3286                                   | 3235                                 | 3262                                   | 3230                                 |
| sp3 (CH)              | 3094                                   | 3093                                 | 3159                                   | 3131                                 | 3006                                   | 3038                                 |
| sp3 (CH)              | 2943                                   | 3003                                 | 2946                                   | 3033                                 | 2924                                   | 3033                                 |
| $v_{as}(COO)$         | 1582                                   | 1572                                 | 1594                                   | 1584                                 | 1598                                   | 1591                                 |
| v <sub>s</sub> (COO), | 1341                                   | 1332                                 | 1352                                   | 1370                                 | 1367                                   | 1371                                 |
| C—O stretching        | 1068                                   | 1060                                 | 1038                                   | 1031                                 | 1237                                   | 1228                                 |
| C—O stretching        | 1024                                   | 1021                                 | 906                                    | 891                                  | 850                                    | 862                                  |
| (Cu–N).               | 522                                    | 527                                  | 522                                    | 520                                  | 548                                    | 564                                  |

| S.No. | Name of complex                                                | Absorption wavelength | Ref.         |
|-------|----------------------------------------------------------------|-----------------------|--------------|
|       |                                                                | (nm)                  |              |
| 1.    | $[Cu(N-hyden)_2](o-methoxybz)_2$                               | 578                   | 57           |
| 2.    | [Cu(N- <i>hyden</i> ) <sub>2</sub> ](m-methoxybz) <sub>2</sub> | 582                   | 57           |
| 3.    | $[Cu(N-hyden)_2](p-methoxybz)_2$                               | 580                   | 57           |
| 4.    | $[Cu(en)_2(H_2O)_2](m-methoxybz)_2$                            | 546                   | 59           |
| 5.    | $[Cu(en)_2(H_2O)_2](3,4,5-trimethoxybz)_2$                     | 552                   | 59           |
| 6.    | $[Cu(en)_2(H_2O)_2](mef)_2$                                    | 555                   | 60           |
| 7.    | $[Cu(N-hyden)_2]Cl_2$                                          | 556                   | 61           |
| 8.    | Complex 1                                                      | 560                   | Present work |
| 9.    | Complex 2                                                      | 575                   | Present work |
| 10.   | Complex <b>3</b>                                               | 578                   | Present work |

Table S6 Some of characteristic examples of complexes having  $CuN_4O_2$  chromophore.

## Table S7: calculated Mulliken charges of the atoms in complexes 1-3

| omplex 2 Complex 3 | n Mulliken<br>Charges | -0.558 | -0.553 |        |       |        |        |        |        |        |
|--------------------|-----------------------|--------|--------|--------|-------|--------|--------|--------|--------|--------|
|                    | Aton                  | 035    | 036    |        |       |        |        |        |        |        |
|                    | Mulliken<br>Charges   | 1.145  | -0.452 | -0.514 | 0.268 | 0.275  | 0.233  | 0.422  | -0.643 | 1.253  |
|                    | Atom                  | Cu13   | N14    | N16    | C17   | C20    | C25    | C28    | 031    | N34    |
|                    | Mulliken<br>Charges   | -0.140 | 0.060  | -0.201 | 0.454 | -0.368 | -0.013 | -0.276 | 1.1531 | -0.867 |
|                    | -<br>Atom             | C1     | C2     | C3     | C4    | C5     | C6     | Cl9    | C10    | 011    |
|                    | Mulliken<br>Charges   | -0.431 | -0.190 | 0.339  |       |        |        |        |        |        |
|                    | Atom                  | C29    | C32    | 035    |       |        |        |        |        |        |
| CC                 | Mulliken<br>Charges   | 0.079  | -0.124 | -0.017 | 0.025 | 0.71   | -0.175 | -0.061 | -0.395 | -0.205 |

|          | Comp                | olex 1 |                     |      |                     |      |
|----------|---------------------|--------|---------------------|------|---------------------|------|
| Ato<br>m | Mulliken<br>Charges | Atom   | Mulliken<br>Charges | Atom | Mulliken<br>Charges | Atom |
| Cu 1     | 0.232               | C12    | 0.202               | C1   | -0.429              | 013  |
| Cl2      | 0.548               | C13    | -0.616              | C2   | 0.043               | N14  |
| 03       | -0.088              | C14    | -0.773              | C3   | -0.464              | 015  |
| 04       | -0.274              | C15    | 0.143               | C4   | -0.160              | 016  |
| 05       | -0.300              | C16    | -0.033              | C5   | 0.615               | Cu17 |
| 9N       | -0.234              | C18    | -0.304              | C6   | -0.423              | N18  |
| 60       | -0.007              | C20    | 0.021               | C110 | 0.543               | N20  |
| N10      | -0.171              | C22    | -0.343              | C11  | -0.603              | C21  |
| 011      | -0.004              |        |                     | 012  | -0.032              | C24  |

# Table S8: General surface information for complexes 1-3

| General surface          | Complex 1 | Complex 2 | Complex 3 |
|--------------------------|-----------|-----------|-----------|
| information              |           |           |           |
| Iso-value                | 0.05      | 0.5       | 0.5       |
| Volume (Å <sup>3</sup> ) | 552.45    | 471.77    | 493.20    |
| Area (Å <sup>2</sup> )   | 468.53    | 399.26    | 424.76    |
| Globularity              | 0.695     | 0.734     | 0.711     |
| Asphericity              | 0.410     | 0.177     | 0.085     |

## Table S9: Surface property information for complexes 1-3

| Name               | (      | Complex | 1     | Complex 2 |        |       | Complex 3 |        |       |
|--------------------|--------|---------|-------|-----------|--------|-------|-----------|--------|-------|
| (property)         | Min    | Mean    | Max   | Min       | Mean   | Max   | Min       | Mean   | Max   |
| d <sub>i</sub> (Å) | 0.927  | 1.689   | 2.381 | 0.654     | 1.591  | 2.453 | 0.713     | 1.620  | 2.601 |
| d <sub>e</sub> (Å) | 0.927  | 1.696   | 2.403 | 0.928     | 1.662  | 2.463 | 0.716     | 1.695  | 2.611 |
| d <sub>norm</sub>  | -0.316 | 0.402   | 1.130 | -0.733    | 0.383  | 1.092 | -0.642    | 0.447  | 1.341 |
| Shape index        | -0.995 | 0.209   | 0.995 | -0.990    | 0.216  | 0.996 | -0.997    | 0.209  | 0.999 |
| Curvedness         | -4.023 | -0.960  | 0.132 | -3.969    | -0.927 | 0.355 | -3.708    | -0.940 | 0-359 |

Table S10: Breaking down the fingerprint by element type, the surface area of close interactions between atoms within and outside of the surface is determined as a proportion of the total surface area for complexes 1-3.

|              | Inside   | Outside atoms |      |         |         |                |      |          |  |  |  |
|--------------|----------|---------------|------|---------|---------|----------------|------|----------|--|--|--|
|              | atom     | Cu            | Cl   | 0       | N       | п              | С    |          |  |  |  |
|              | C        | Cu<br>0       |      | 5.4     |         | <u>п</u><br>20 |      | 12.0     |  |  |  |
| Complex      |          | 0             | 0.7  | 2.4     | 0.9     | 5.9            | 1.9  | 0.1      |  |  |  |
| Complex<br>1 |          | 0             | 0    | 3.2     | 0.8     | 4.4            | 0.7  | 9.1      |  |  |  |
| 1            |          | 0             |      | 17.1    | 0       | $\frac{0}{2}$  |      | <u> </u> |  |  |  |
|              |          | 0             | 2.7  | 1/.1    | 0.1     | 20.0           | 3.2  | 49./     |  |  |  |
|              | <u>N</u> | 0             | 0.8  | 0       | 0       | 0.1            | 0.9  | 1.8      |  |  |  |
|              | 0        | 0             | 2.4  | 0.4     | 0       | 18.6           | 4.8  | 26.2     |  |  |  |
|              |          | 0             | 6.6  | 26.1    | 1.8     | 53.6           | 11.5 |          |  |  |  |
|              | Inside   | Outside atoms |      |         |         |                |      |          |  |  |  |
| Complex 2    | atom     |               |      |         |         |                |      |          |  |  |  |
|              |          | Cu            | Cl   | 0       | H       | N              | C    |          |  |  |  |
|              | С        | 0             | 0    | 2.5     | 1.9     | 1.1            | 1.9  | 7.9      |  |  |  |
|              | Cl       | 0             | 0    | 1.0     | 6.3     | 0              | 0    | 7.3      |  |  |  |
|              | Cu       | 0             | 0    | 0       | 0       | 0              | 0    | 0        |  |  |  |
|              | Н        | 0             | 8.2  | 23.8    | 31.7    | 0              | 2.2  | 65.9     |  |  |  |
|              | Ν        | 0             | 0    | 0       | 0.1     | 0              | 1.0  | 1.1      |  |  |  |
|              | 0        | 0             | 0.8  | 1.2     | 14.2    | 0              | 2.2  | 18.4     |  |  |  |
|              |          | 0             | 9.1  | 28.4    | 54.1    | 1.1            | 7.3  |          |  |  |  |
|              | Inside   |               |      | Outside | e atoms |                |      |          |  |  |  |
|              | atom     |               |      |         |         |                |      |          |  |  |  |
|              |          | Cu            | 0    | Н       | Ν       | С              | Cl   |          |  |  |  |
|              | С        | 0             | 1.8  | 4.2     | 0       | 0              | 0.7  | 6.7      |  |  |  |
| Complex      | Cl       | 0             | 0.8  | 2.0     | 0.5     | 0.6            | 0.8  | 4.8      |  |  |  |
| 3            | Cu       | 0             | 0.7  | 0       | 0       | 0              | 0    | 0.7      |  |  |  |
|              | Н        | 0             | 22.1 | 37.4    | 0       | 6.7            | 3.5  | 69.6     |  |  |  |
|              | Ν        | 0             | 0.5  | 0       | 0       | 0              | 0.5  | 1        |  |  |  |
|              | 0        | 0             | 1.2  | 13.3    | 0.5     | 1.5            | 0.7  | 17.2     |  |  |  |
|              |          | 0             | 27.1 | 56.9    | 1.0     | 8.8            | 6.1  |          |  |  |  |

Table S11: Molecular docking of complexes 1-3 against two Gram-positive bacteria (B. Cereus, S. Aureus) with PDB ID (5V8E, 1BDD) respectively and four Gram-negative bacteria (E. Coli, S. Typhi, P. Aeruginosa, S. Flexneri) with PDB ID (1DIH, 1TJY, 6P8U, 5KH1)

| Protein | Complex 1 |           |           | Complex 2 |           |           | Complex 3 |           |           |  |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| (PDB:ID |           |           |           |           |           |           |           |           |           |  |
| )       |           |           |           |           |           |           |           |           |           |  |
|         | Binding   | Inhibitio | Binding   | Binding   | Inhibitio | Binding   | Binding   | Inhibitio | Binding   |  |
|         | residue   | n         | energy    | residue   | n         | energy    | residue   | n         | energy    |  |
|         | s         | Constant  | (kcal/mol | s         | Constant  | (kcal/mol | s         | Constant  | (kcal/mol |  |
|         |           | (µMol)    | )         |           | (µMol)    | )         |           | (µMol)    | )         |  |
| 5V8E    | Lys103    | 0.7989    | -8.3      | Lys103    | 1.869     | -7.8      | Lys103    | 0.4797    | -8.6      |  |
|         | His201    |           |           | His201    |           |           | Ser142    |           |           |  |
|         | His202    |           |           | Phe250    |           |           | Lys143    |           |           |  |
|         | Ser249    |           |           | Ser249    |           |           | His201    |           |           |  |
|         | Asp314    |           |           | Asp313    |           |           | Ser385    |           |           |  |
|         | Asp336    |           |           | Asp314    |           |           | Asn386    |           |           |  |
|         | Ser337    |           |           | Ser337    |           |           | Ser388    |           |           |  |
|         | Arg359    |           |           | Phe338    |           |           |           |           |           |  |
|         |           |           |           | Arg359    |           |           |           |           |           |  |
|         |           |           |           | Ser383    |           |           |           |           |           |  |
| 1BDD    | Phe6      | 10.130    | -6.8      | Ala2      | 23.7008   | -6.3      | Glut27    | 23.7008   | -6.3      |  |
|         | Gln11     |           |           | Asp3      |           |           | Glu48     |           |           |  |
|         | Pro39     |           |           | Phe6      |           |           |           |           |           |  |
| 1DIH    | Arg16     | 0.6740    | -8.4      | His159    | 7.210     | -7.0      | Arg16     | 1.576     | -7.9      |  |
|         | Met17     |           |           | Val217    |           |           | Met17     |           |           |  |
|         | Arg81     |           |           | Arg240    |           |           | Phe79     |           |           |  |
|         | Asn128    |           |           | Phe243    |           |           | Asn128    |           |           |  |
|         | Thr170    |           |           |           |           |           | Thr170    |           |           |  |
|         | Arg240    |           |           |           |           |           | Arg240    |           |           |  |
|         | Phe243    |           |           |           |           |           |           |           |           |  |
| 1TJY    | Met106    | 3.081     | -7.5      | Thr163    | 14.232    | -6.6      | Met106    | 1.5765    | -7.9      |  |
|         | Lys111    |           |           | Thr165    |           |           | Glu107    |           |           |  |
|         | Ser125    |           |           | Lys172    |           |           | Lys111    |           |           |  |
|         | Leu282    |           |           | Tyr312    |           |           | Leu282    |           |           |  |
|         | Gly318    |           |           |           |           |           | Met286    |           |           |  |
| 6P8U    | Ile81     | 0.946     | -8.2      | Arg164    | 3.652     | -7.4      | Gln22     | 2.602     | -7.6      |  |
|         | Tyr83     |           |           | Leu207    |           |           | Phe46     |           |           |  |
|         | Lys122    |           |           | Glu208    |           |           | Leu47     |           |           |  |
|         |           |           |           | Leu210    |           |           | Tyr51     |           |           |  |
|         |           |           |           | Tyr211    |           |           | Ala52     |           |           |  |
|         |           |           |           | Gly213    |           |           | Tyr141    |           |           |  |
|         |           |           |           |           |           |           | Lys160    |           |           |  |
| 5KH1    | Glu418    | 3.652     | -7.4      | Glut193   | 5.132     | -7.2      | Asp213    | 0.946     | -8.2      |  |
|         | Asp486    |           |           | Leu194    |           |           | Pro215    |           |           |  |
|         | Glu487    |           |           | Thr212    |           |           | Phe462    |           |           |  |
|         | Arg554    |           |           | Asp213    |           |           | Val465    |           |           |  |
|         | Gln558    |           |           | Pro235    |           |           | Ser466    |           |           |  |
|         |           |           |           |           |           |           | Gly467    |           |           |  |