Supporting Information

Integration of Conductive MOF and MXene for High-Performance Supercapacitor

Rongmei Zhu, Yijing Gu, Limei Liu, Jiadan Lu and Huan Pang*

R. Zhu, Y. Gu, L. Liu, J. Lu, Prof. H. Pang

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu (P. R. China) E-mail: huanpangchem@hotmail.com, panghuan@yzu.edu.cn

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Table of Content

Characterization
Electrochemical measurement
Asymmetric supercapacitor assembly and measurements4
Table S15
Fig. S16
Fig. S2
Fig. S3
Fig. S49
Fig. S5
Fig. S6
Fig. S712
Fig. S8
Fig. S914
Fig. S1015
Fig. S1116
Fig. S1217
Fig. S13
Fig. S1419

Characterization

XRD patterns were examined on a Bruker D8 Advance X-ray diffractometer (Cu-K α radiation: λ =0.15406 nm). XPS measurement was carried out using an Axis Ultra X-ray photoelectron spectrometer (Kratos Analytical Ltd., UK) equipped with Al-K α source (hv = 1486.6 eV). The morphological characteristics of the sample were observed using a field emission scanning electron microscope (Zeiss_Supra55) at an acceleration voltage of 5.0 KV. TEM images, SAED images, and EDS mapping images were captured on a Tecnai G2 F30 transmission electron microscope with an acceleration voltage of 300 kV.

Electrochemical measurement

All electrochemical measurements were conducted in a typical three-electrode electrochemical cell, which contained a 3 M KOH aqueous solution as the electrolyte. The working electrode (WE) consisted of nickel foam with active materials. The Hg/HgO electrode served as the reference electrode (RE), and the counter electrode (CE) was a Pt electrode. Cyclic voltammetry (CV) measurements were performed on a CHI760e electrochemical workstation. The working electrode was made by mixing the as-prepared sample powder, acetylene black, and polytetrafluoroethylene at a weight ratio of 80:15:5, respectively. Then, a piece of nickel foam size of approximately 1×1 cm was coated by above powder. Then, the nickel foam was pressed into a thin foil at a pressure of 8 MPa. The mass loading of the active material on the electrodes is about 2 mg. The electrochemical capacitive performance of the electrodes can be measured by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) curves and stability test. The specific capacity can be calculated from the GCD curves through equations:

$$C_m = \frac{I \,\Delta t}{m \,\Delta V}$$

Asymmetric supercapacitor assembly and measurements

For asymmetric supercapacitor (ASC) device, the as-synthesized MXene@Ni-HHTPx and activated carbon (AC) used as positive and negative electrodes, respectively, which was investigated in 3 M KOH. The negative electrode was prepared by using a similar procedure with positive electrode. The AC was produced by Shenzhen Naxin Material Co., Ltd whose type is YEC-8. The specific surface area and bulk density of AC (YEC-8) are about 2000 m²/g and 0.4 g/mL, respectively. Similar as before, the negative electrode was made by mixing the as-prepared AC, acetylene black, and polytetrafluoroethylene at a weight ratio of 80:15:5, respectively. To balance the charges between the positive and negative electrodes, the load-bearing ratio of MXene@Ni-HHTP-2 to AC on nickel foam is about 2 : 5.4. Then, the above powder was coated on a piece of nickel foam, approximately 1×1 cm². Then, the nickel foam was pressed into a thin foil at a pressure of 8 MPa. The mass loading of the active material on the electrodes is about 2 mg. Then, the nickel foam was pressed into a thin foil at a pressure of 8 MPa. The mass loading of the active material on the electrodes is about 2 mg and the mass ratio of the positive electrode and negative electrode was about 1:1. The energy density (E, W h kg⁻¹) and power density (P, W kg⁻¹) were calculated through equations:

$$E = \frac{C \Delta V^2}{7.2}$$
$$P = \frac{E \times 3600}{\Delta t}$$

Name	MXene (mg)	HHTP (mg)	$Ni(OAc)_2 \cdot 4H_2O (mg)$
M@cMOF-1	5	3.5	5
M@cMOF-2	10	3.5	5
M@cMOF-3	20	3.5	5
M@cMOF-4	40	3.5	5
M@cMOF-5	100	3.5	5
M@cMOF-6	10	1.7	2.5
M@cMOF-7	10	7	10
M@cMOF-8	10	7	0

Table S1. Experimental reaction formula of MXene@cMOF-*x*

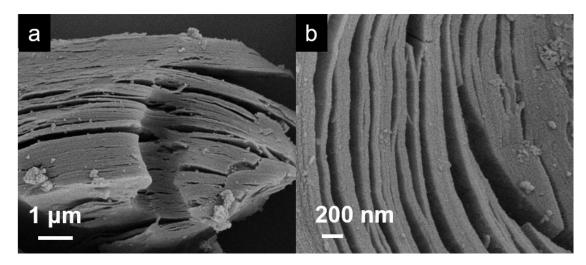


Fig. S1. (a-b) SEM images of MXene with different magnifications.

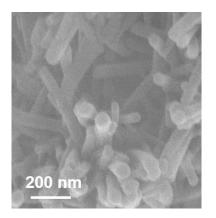


Fig. S2. SEM image of Ni-HHTP.

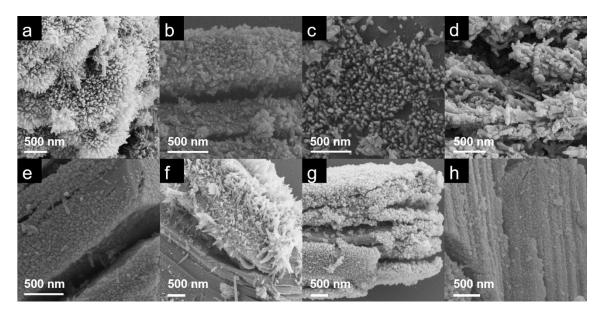


Fig. S3. (a-h) SEM images of M@cMOF-1~8.

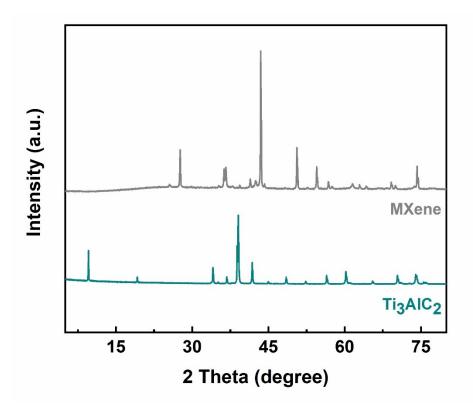


Fig. S4. XRD patterns of Ti_3AlC_2 and MXene.

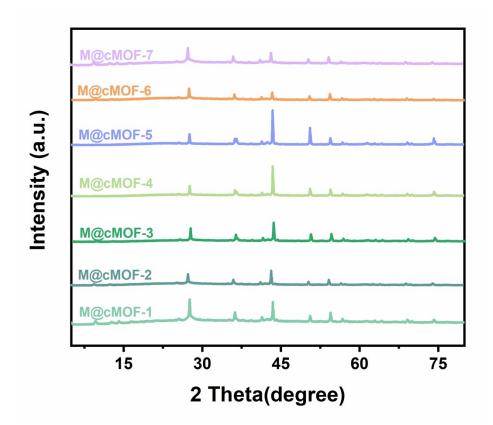


Fig. S5. XRD patterns of M@cMOF-1~7.

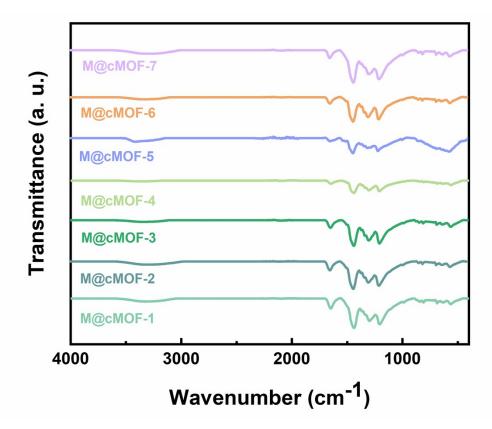


Fig. S6. FT-IR spectra of M@cMOF-1~7.

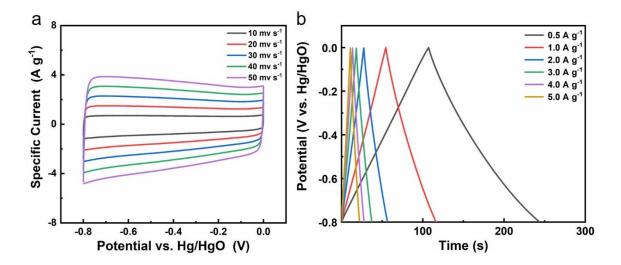


Fig. S7. CV and GCD curves of activated carbon.

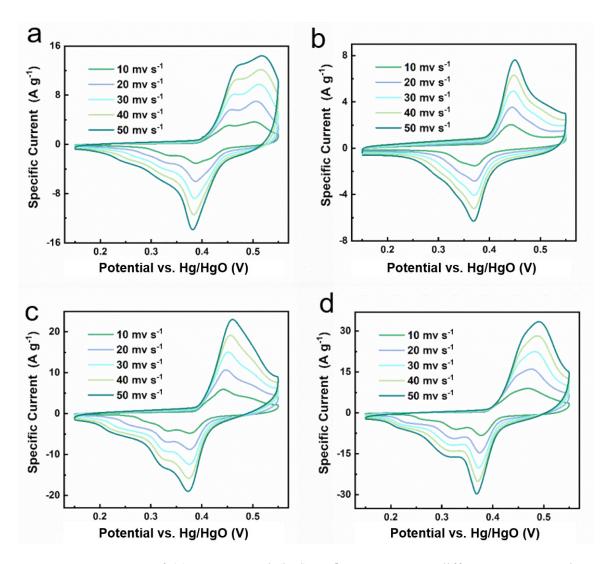


Fig. S8. CV curves of (a) MXene and (b-d) M@cMOF-1~3 at different scan rates in a three-electrode system.

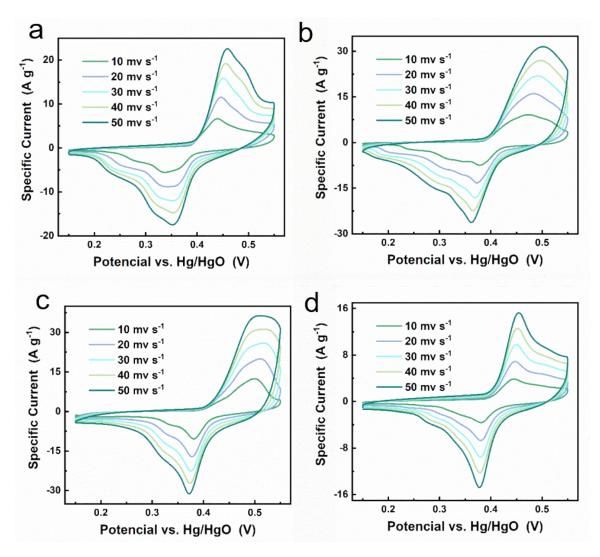
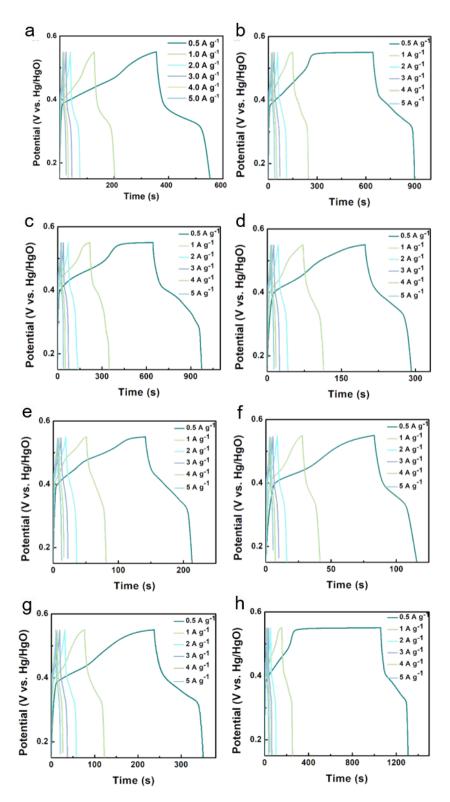



Fig. S9. CV curves of (a-d) M@cMOF-4~7 at different scan rates in a three-electrode system.

Fig. S10. GCD curves of (a) MXene and (b-f) M@cMOF-1~7 at different current densities in a three-electrode system.

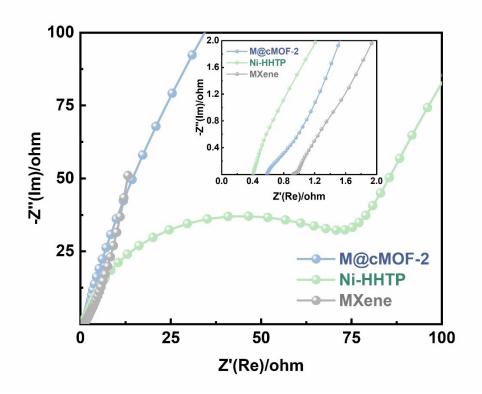


Fig. S11. Nyquist plots of MXene, Ni-HHTP and M@cMOF-2. Insets: magnified high-frequency region.

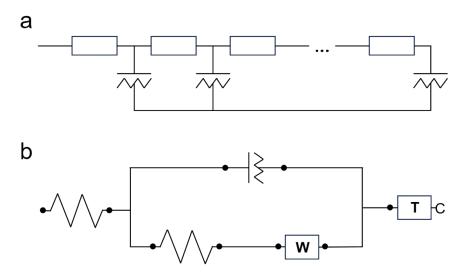


Fig. S12. The fitted equivalent circuits of (a)MXene, M@cMOF-2 and (b) Ni-HHTP.

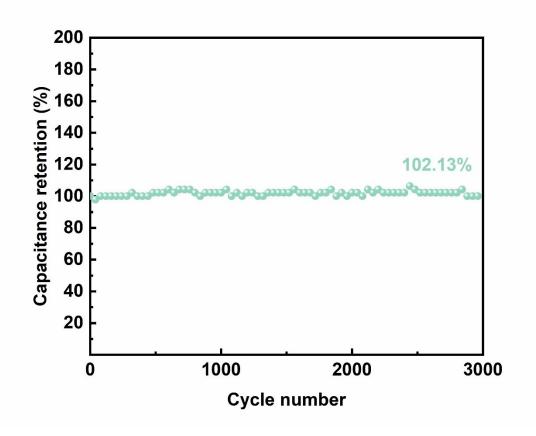


Fig. S13. Cycling stability of M@cMOF-2 at 3 A g⁻¹ for 3000 cycles.

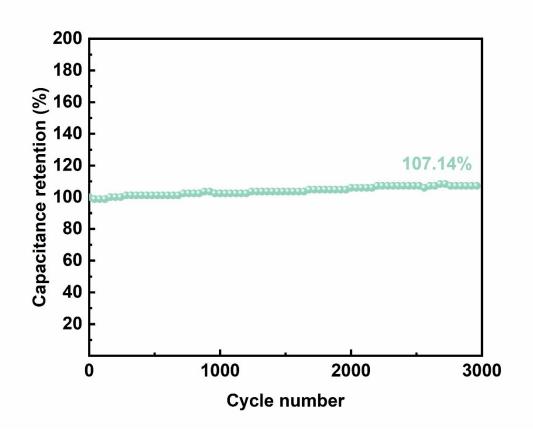


Fig. S14. Cycling stability of M@cMOF-2//AC aqueous asymmetric supercapacitor at 3 A g^{-1} for 3000 cycles.