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1 Experimental section

1.1 Materials characterization

Powder X-ray diffraction (XRD) (Rigaku Smartlab 9 kW Japan) was performed at 

45 kV and 200 mA with Cu Kα radiation (λ = 1.5406 Å).  The morphology was 

observed on the Hitachi S-4800 scanning electron microscope and FEI Tecnai G2 F20 

transmission electron microscope (TEM) at 200 kV.  X-ray photoelectron 

spectroscopy (XPS) was carried out on the K-Alpha+ (Thermo Scientific) with a 50 eV 

pass energy and 1.0 eV energy step.  The elemental analysis was conducted on the 

energy-dispersive X-ray spectrometer (HAADF-STEM-EDS). 

1.2  Electrochemical measurements

The electrochemical properties of VN, Ti3C2Tx, and Ti3C2Tx/VN were determined in 

3 M KOH on the CHI660E electrochemical workstation using the traditional three-

electrode configuration at 25 °C with platinum and Hg/HgO as the counter and 

reference electrodes, respectively.  The working electrode was prepared by mixing the 

active materials, conductive carbon black, and polytetrafluoroethylene (PTFE) 

emulsion with a mass ratio of 8:1:1.  An appropriate amount of anhydrous ethanol was 

added to the mixture and stirred.  The slurry was coated on a 1×1 cm2 nickel foam 

substrate and dried for 12 hours. Cyclic voltammetry (CV) and galvanostatic charging-

discharging (GCD) were performed at various scanning rates to gauge the rate 

capability of the active electrode.  Electrochemical impedance spectroscopy (EIS) was 
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conducted in a frequency region of 100 kHz to 0.01 Hz at an open circuit potential of 

10 mV.  The specific capacitance (Cm, F g-1) was calculated as follows:

                         (1)
𝐶𝑚 =

𝐼 × ∆𝑡
𝑚 × ∆𝑉

where I (A) is the applied current, Δ𝑡(s) is the discharging time, Δ𝑉 (V) is the disch

arging potential range, and m (g) is the total mass of active materials, respectively.  

The theoretical pseudocapacitance was calculated as follows: 

                           (2)
𝐶 =

𝑛 × 𝐹
𝑀 × 𝑉

where n (mol) is the number of electrons transferred in the redox reaction, M (g. 

mol-1) is the molar mass of the materials, and F (C. mol-1) is Faraday’s constant and V 

(V) is the operating voltage window, respectively.

The asymmetric supercapacitor device was assembled by Ti3C2Tx/VN as the positive 

electrode and AC as the negative electrode.  In order to obtain the best electrochemical 

characteristics of Co3O4// Ti3C2Tx /VN, the charge balance between the two electrodes 

follows the relationship of q+ = q-, where q is the charge stored by the electrode 

calculated by the following equation:

                   (3)𝑞 = 𝐶𝑚 × ∆𝐸 × 𝑚

where Cm (F g-1) is the specific capacitance, ΔE (V) is the potential range of the 

charging/discharging process, and m (g) is the mass loading of the active materials. 

According to equation (3), the ideal mass ratio of the active materials on the positive 

(Ti3C2Tx/VN) to that on the negative electrode (Co3O4) (m+/m-) can be calculated by 

the following:

                     (4)

𝑚 +

𝑚 ‒
=

∆𝐸 ‒ × 𝐶 ‒

∆𝐸 + × 𝐶 +
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The energy density (E) and power density (P) can be calculated by the following 

equations:

                  (5)
𝐸 =

1
2

𝐶𝑚(∆𝑉)2

and                     (6)
𝑃 =

𝐸
∆𝑡

where E (Wh kg-1) is the energy density, m (F g-1) is the specific capacitance, ΔV 

(V) is the operating potential window, P (kW kg-1) is the power density, and Δt(s) is the 

discharging time.

　To study the charge storage mechanisms, the following equation is adopted to define 

the capacitive capacitance in the total capacitance:

.　　　　　　　　(7)𝐼(𝑉) = 𝑘1𝑉 + 𝑘2𝑉1/2

The first term on the right side of the equation corresponds to the capacitance-

controlled effect and the other involves diffusion-controlled insertion. i(V) and v are 

the current at potential V and scanning rate, slope, and intercept by plotting i(V)/v1/2 

against v1/2.
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Figure S1. (a) XRD pattern of Ti3C2Tx, SEM images of (a1, a2); (b) XRD pattern of 

MAX, SEM images of (b1, b2); (c) the Ti3C2Tx nanosheet.

Nanoscale Paper 

(c)
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Figure S2. (a) CV and (b) GCD curves of the VN electrolyte at various scan rates (2–

50 mV s−1) and various current densities (1–15 A g−1). (c)GCD curves of Ti3C2Tx/VN 

for different current densities．(d) CV and (e) GCD curves of the Ti3C2Tx 

electrolyte．(f)　Capacitive contribution at a scan rate of 50 mV s−1.

Table S1. Comparison of the electrochemical properties of different electrodes based 

on VN.

Materials
Specific 

capacitance 
(F g-1)

Potential 
window/ V

Cycle number
(%) Reference

Ti3C2Tx/VN 382.1 1 5000/93.5% This Work
VN/NG 370 1.2 10000/98.66% Ref [1]

CNS@VN 300.4 1 5000/70.8% Ref [2]
VN/NCS 148 1 5000/78% Ref [3]

VN/PEDOT 226.2 1 5000/91.5% Ref [4]
VN/NPC 198.3 1 16000/107.6% Ref [5]
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Figure S3. TEM and HR-TEM images of (a-c) Ti3C2Tx, (d-f) VN, (g-i) Ti3C2Tx/VN after 

cycling.
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Figure S4. SEM images of the Co3O4 electrode.
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Figure S5. XRD pattern of Co3O4.
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Figure S6. (a) CV curves of Ti3C2Tx/VN and Co3O4; (b, c) CV curves and GCD plots 

of Co3O4 (d) Specific capacities of Co3O4; (e) CV curves acquired at a scanning rate of 

30 mV s-1 in different voltage windows; (f) GCD curves acquired at 3 A g-1 in different 

voltage windows.
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Table S2. Comparison of the electrochemical properties of different electrodes based 

on VN.

Materials
Potentia
l window 
(V)

Energy 
densities
(Wh kg-1)

Power 
densities
(W kg-1)

Cycle 
number References

Co3O4//Ti3C2Tx

/VN (0-1.6) 69.1 800 3000/9
1.9% This Work

Co (OH)2//VN (0-1.6) 22 160 4000>
80% Ref [6]

NCA//VN/PED
OT (0-1.6) 48.36 1600 10000/

91.6% Ref [4]

MnO2@CC//V
N-NWs@CC

(0.5-
1.6) 57.9 261.5 12000/

118% Ref [7]

Co3O4//CNS@
VN (0-1.6) 18.8 800 / Ref [8]

PCNS@VNNP
//NiO (0-1.6) 47.2 800 2500/9

7.5% Ref [9]

VNQD/PC//Ni 
(OH)2

(0-1.6) 31.2 780 / Ref [10]

HPCF@VNNP
//Ni (OH)2

(0-1.6) 39.3 400 / Ref [11]

V2O3/C//VN/N
CS (0-1.6) 19.8 800 / Ref [12]

0.04-VN/NCS-
2//NiCo2S4

(0-1.6) 21 800 / Ref [13]

Materials Potential 
window 

(V)

Energy 
densities

Power 
densities

Cycle 
number

Reference
s

Fe2O3@VN/CC
//RuO2/CC

0-1.4V 0.5 mWh 
cm-2

12.28 mW 
cm-2

15000/80% Ref [14]

ZNCO/NF//VN
/CC

0-1.6V 0.185 
mWh cm-2

22.4 mW 
cm-2

8000/87% Ref [15]

VN/NPC// 
VN/NPC SSC

0-1V 21.97 
µWh cm-2

0.5 mW 
cm-2

18000/90.9
%

Ref [5]

References

[1] J. Balamurugan, G. Karthikeyan, T.D. Thanh, N.H. Kim, J.H. Lee, Facile synthesis 

mailto:co3o4//CNS@VN
mailto:co3o4//CNS@VN
mailto:PCNS@vnnp//NiO
mailto:PCNS@vnnp//NiO
mailto:HPCF@vnnp//Ni(OH)2
mailto:HPCF@vnnp//Ni(OH)2


12

of vanadium nitride/nitrogen-doped graphene composite as stable high performance 

anode materials for supercapacitors, J. Power Sources 308 (2016) 149-157. 

[2] Y. Liu, L. Liu, Y. Tan, L. Niu, L. Kong, L. Kang, F. Ran, Carbon 

nanosphere@vanadium nitride electrode materials derived from metal-organic 

nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer, 

Electrochim. Acta 262 (2018) 66-73. 

[3] X. Jiang, W. Lu, X. Yu, S. Song, Y. Xing, Fabrication of a vanadium nitride/N-

doped carbon hollow nanosphere composite as an efficient electrode material for 

asymmetric supercapacitors, Nanoscale Adv. 2(9) (2020) 3865-3871. 

[4] Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible All-

Solid-State Supercapacitors.

[5] Z. Wu, Q. Chen, C. Li, L. Zhu, Y. Huang, X. Zhu, X. Zhu, Y. Sun, Hydrogel-derived 

nitrogen-doped porous carbon framework with vanadium nitride decoration for 

supercapacitors with superior cycling performance, J. Mater. Sci. Technol. 155 (2023) 

167-174. 

[6] R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on 

flower-like Co(OH)2 and urchin-like VN electrode materials, J. Mater. Chem. A  2(32) 

(2014) 12724-12732.

[7] M. Ma, Z. Shi, Y. Li, Y. Yang, Y. Zhang, Y. Wu, H. Zhao, E. Xie, High-performance 

3 V “water in salt” aqueous asymmetric supercapacitors based on VN nanowire 

electrodes, J. Mater. Chem. A 8(9) (2020) 4827-4835. 

[8] Y. Liu, L. Liu, Y. Tan, L. Niu, L. Kong, L. Kang, F. Ran, Carbon 

nanosphere@vanadium nitride electrode materials derived from metal-organic 

nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer, 

Electrochim. Acta 262 (2018) 66-73.

[9] G. Wang, S. Hou, C. Yan, X. Zhang, W. Dong, Preparation of three-dimensional 

vanadium nitride porous nanoribbon/graphene composite as an efficient electrode 

material for supercapacitors, J. Mater. Sci. Mater. Electron.  29(15) (2018) 13118-

13124.

[10] Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, J. Wu, X. Niu, F. Ran, Novel Hybrid 

Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical 

Supercapacitor, Nano-Micro Lett. 

 9(1) (2016) 6.

[11] Y. Liu, L. Liu, Y. Tan, L. Kong, L. Kang, F. Ran, Well-Dispersed Vanadium 

Nitride on Porous Carbon Networks Derived from Block Copolymer of PAN-b-PDMC-b-PAN 

Absorbed with Ammonium Metavanadate for Energy Storage Application, J. Phys. Chem. 

C. 122(1) (2018) 143-149.

[12] X. Jiang, W. Lu, X. Yu, S. Song, Y. Xing, Fabrication of a vanadium nitride/N-

doped carbon hollow nanosphere composite as an efficient electrode material for 

asymmetric supercapacitors, Nanoscale Adv.  2(9) (2020) 3865-3871.

[13] X. Jiang, W. Lu, Y. Li, Y. Yu, X. Zhou, X. Liu, Y. Xing, An Eco-Friendly Nitrogen 

Source for the Preparation of Vanadium Nitride/Nitrogen-Doped Carbon Nanocomposites 

for Supercapacitors, ChemElectroChem 6(13) (2019) 3445-3453.

[14] H. Zhou, M. Alam, Y. Wu, Y. Zeng, A.N. Gandi, J. Zheng, W. Zhu, Z. Wang, H. 

https://www.x-mol.com/paper/0/77
https://www.x-mol.com/paper/0/1467
https://www.x-mol.com/paper/0/35
https://www.x-mol.com/paper/0/35
https://www.x-mol.com/paper/0/1359


13

Liang, Synergy of VN and Fe2O3 Enables High Performance Anodes for Asymmetric 

Supercapacitors, ACS Appl. Mater. Interfaces 15(15) (2023) 18819-18827. 

[15] Z. Wu, H. Li, H. Li, B. Yang, R. Wei, X. Zhu, X. Zhu, Y. Sun, Direct growth of 

porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-

state supercapacitors, Chem. Eng. J. 444 (2022).


