Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Improved electrochemical performance of FeO_x(OH)/IF electrode via *in-situ* surface modification with organic naphthoquinone molecules

Zongyi Shang,[†] Jiayu Li,[†] Yu Chen,[†] Zhigang Zhao,^{*,‡} and Caixia Zhou^{*,†}

[†] Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China

[‡] Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China

Corresponding author: C.X. Zhou: cx_Zhou123@163.com Z.G. Zhao: zzg63129@163.com

Fig. S1. Schematic illustration of the setup for in situ electrochemical ATR infrared absorption spectroscopy.

The *in situ* electrochemical attenuated total-reflection (ATR) infrared absorption spectral measurement (see Fig. S1) was run on a NQ@FeO_x(OH) active material layer covered on an ca. 60 nm thick Au film chemically deposited on the basal plane of a hemicylindrical Si prism using a Agilent Cary 660 FTIR spectrometer equipped with liquid cooling MCT detector. Then 10 μ L above-mentioned catalyst ink was transferred onto an electrochemically polished Au film via a pipette. In this structure, an electrochemical three-electrode system was assembled by using the gold nanometer film as the working electrode (WE) and combining the graphite rod counter electrode (CE) and a Hg/HgO electrode as the reference electrode (RE). In this work, all spectra are expressed in absorbance units defined as log(*I*/*I*₀), where *I* and *I*₀ represent the absorption intensities at the sample and reference conditions, respectively.

Fig. S2. The SEM images of blank iron foam.

Fig. S3. The SEM images of NQ/IF electrodes

Fig. S4. The electrochemical properties of NQ@FeO_x(OH)/IF electrode produced at different hydrothermal time (0.5 h, 1 h, 2 h, 5 h, and 10 h). (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 4 mA cm⁻².

Fig. S5. The electrochemical properties of NQ@FeO_x(OH)/IF electrode synthesised at different concentration of NQ solution. (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 20 mA cm⁻².

Fig. S6. CV curves of NQ@FeO_x(OH)/IF and FeO_x(OH)/IF (b) at different scan rates from 2 to 25 mV s⁻¹, and (c) the corresponding b-values determined by the linear fitting of cathodic peak currents of CV curves with different scan rates.

Anode	Electrolyte	Voltage	Specific capacity	Reference
Fe ₃ O ₄ /rGO	8 M KOH + 0.01 M Na ₂ S	-1.2 ~ -0.4 V	320 mAh g^{-1}	[1]
GE@CNT-Fe-Fe ₃ C/CF	1 M KOH	-1 ~ 0 V	1.74 mAh cm ⁻³	[2]
C–Fe nanoparticles	1 М КОН	-1.2 ~ 0 V	208 mAh g ⁻¹	[3]
3D-Fe/Fe ₂ O ₃ @C	1 М КОН	-1.1 ~ 0 V	3.07 mAh cm ⁻²	[4]
Fe ₂ O ₃ @GH	6 M KOH	-1.1 ~ -0.2 V	304 mAh g ⁻¹	[5]
Fe ₃ S ₄ @rGO	6 M KOH + 15 g L ⁻¹ LiOH	0.6 ~ 1.5 V	343.6 mAh g ⁻¹	[6]
Fe ₃ S ₄ microspheres	6 М КОН	0.9 ~ 1.5 V	328.5 mAh g ⁻¹	[7]
C@Fe-based/Bi/FF	6 М КОН	-1.1 ~ -0.2 V	2.83 mAh cm ⁻²	[8]
Zn-Fe ₂ O ₃ HPs	1 М КОН	-1.1 ~ 0 V	124 mAh g ⁻¹	[9]
Fe ₃ O ₄ -NGC	6 М КОН	-1.2 ~ 0 V	308.1 mAh g ⁻¹	[10]
Fe ₃ O ₄ @C MNAs	2 М КОН	-1.2 ~ -0.2 V	292.4 mAh g ⁻¹	[11]
NQ@FeOx(OH)/IF (this work)	6 М КОН	-1 ~ 0 V	2.23 mAh cm ⁻² 348.6 mAh g ⁻¹	Present work

Table S1. The comparison of the configuration and specific capacity of various aqueous Febased rechargeable batteries.

Fig. S7. The SEM (a-b), XRD pattern (c), Co XPS spectrum (d), and Ni 2p XPS spectrum (e) of NiCo₂O₄ materials.

NiCo₂O₄ was fabricated as cathodic materials using the hydrothermal method, which was proved to be nanowires from the SEM (Fig. S7a-b). Fig. S7c shows the wide-angle X-ray diffraction (XRD) pattern of the NiCo₂O₄ nanowires scrapped from NiCo₂O₄/NF electrodes. As observed in Fig. S7c, the well-defined diffraction peaks observed at 2 θ values of 18.9°, 31.1°, 36.6°, 44.6°, 59.1°, 64.9° and 68.3° could be successfully indexed to (111), (220), (311), (400), (511), and (440) plane reflections of the spinel NiCo₂O₄ crystalline structure (JCPDF file no. 20-0781), with the standard peaks indicated by the red lines in Fig. S5c. The X-ray photoelectron spectroscopy (XPS) measurement is further carried out to study the chemical composition of the NiCo₂O₄ nanowires, as shown in Fig. S7d-e. The Co 2p spectrum in Fig. S7d can be fitted into both Co²⁺ and Co³⁺ each accompanied with a shakeup satellite, and the Ni 2p spectrum in Fig. S7e can be also best fitted into Ni²⁺ and Ni³⁺ each accompanied with a shakeup satellite. These results indicate that the surface of the NiCo₂O₄ nanostructures contains Co²⁺, Co³⁺, Ni²⁺, and Ni³⁺, which is in good agreement with previous results on NiCo₂O₄.

Fig. S8. The electrochemical measurement of NiCo₂O₄ cathode. (a) the CV curves at different scan rates from 2 to 20 mV s⁻¹, (b) the GCD curves at different current densities from 4 to 80 mA cm⁻², (c) the corresponding specific capacities, (d) the cyclic stability at 60 mA cm⁻².

The electrochemical properties of the NiCo₂O₄/NF electrode were tested using a threeelectrode mode in a 6 M KOH solution. Fig. S8a is the cyclic voltammogram (CV) curves of the NiCo₂O₄ nanowire sample. It is found that all the CV curves share a similar shape and the current increases with increasing the scan rates from 2 to 20 mV s⁻¹. A distinct pair of redox peaks is obviously observed, which clearly reveals the pseudocapacitive characteristic of the electrode. The redox peaks can be attributed to the reaction of M–O/M–O–OH (M represents Ni and Co ions) associated with OH⁻ anions. Also, GCD curves were carried out to study the electrochemical behaviors of NiCo₂O₄ cathode at different current densities from 4 to 80 mA cm⁻² in Fig. S8b. A remarkable calculated areal capacity of 2.9 mAh cm⁻² is presented at a current density of 4 mA cm⁻² in Fig. S8c. The cyclic stability was also studied (Fig. S8d). Over 10000 cycles, the NiCo₂O₄ electrode exhibits impressive durability (84.2%) at 60 mA cm⁻².

Table S2. The comparison of the energy and power density of various aqueous Fe-based rechargeable batteries.

Battery type	Specific capacity	Energy density	Power density	Reference
GE@NiCoO/CF // GE@CNT-Fe-Fe3C/CF battery	1.61 mAh cm ⁻³	1.28 mWh cm ⁻³ at 18.32 mW cm ⁻ $_{3}$	18.32 mW cm ⁻³	[2]
Ni(OH)2 MSs@NF //Fe2O3@GH battery	127 mAh g ⁻¹	203 Wh kg ⁻¹ at 0.798 kW kg ⁻¹	6.4 kW kg ⁻¹	[5]
NiO@C//Fe@C battery	138.9 mAh g ⁻¹	138 Wh kg ⁻¹ at 0.61 kW kg ⁻¹	14.5 kW kg ⁻¹	[12]
Ni-Co DH/OG// Fe ₃ O ₄ /FeOOH/OG battery	180 mAh g ⁻¹	161.3 Wh kg ⁻¹ at 5.7 kW kg ⁻¹	43 kW kg ⁻¹	[13]
Ni@CMFs//Fe@CMFs battery	148.8 mAh g ⁻¹	116 Wh kg ⁻¹ at 5.76 kW kg ⁻¹	5.76 kW kg ⁻¹	[14]
NiO@C//Fe⊂C cell	160 mAh g ⁻¹	140.8 Wh kg ⁻¹ at 0.65 kW kg ⁻¹	15.6 kW kg ⁻¹	[15]
P-NiCo ₂ O ₄ NWAs// α-Fe ₂ O ₃ NRs battery	134.5 mAh g ⁻¹	227 Wh kg ⁻¹ at 0.59 kW kg ⁻¹	23.4 kW kg ⁻¹	[16]
NiCoO//rGO/Fe ₂ O ₃ battery	17.6 mAh cm ⁻³	961.6 mWh cm ⁻³	19.9 mW cm ⁻³	[17]
Ni(OH) ₂ /CNT biscrolled yarn//Fe ₃ O ₄ /CNT biscrolled yarn battery	0.053 mAh/cm	422 mWh cm ⁻³ at 753 mW cm ⁻³	7535 mW/cm ⁻³	[18]
Ni(OH)2@NC/CTs// α-Fe2O3@NC/CTs battery	105.6 mAh g ⁻¹	155.4 Wh kg ⁻¹ at 1.75 kW kg ⁻¹	14 kW kg ⁻¹	[19]
Ni/Fe battery (this work)	1.09 mAh cm ⁻²	235.2 Wh kg ⁻¹ at 547 W kg ⁻¹	5.4 kW kg ⁻¹ at 82 Wh kg ⁻¹	Present work
	147 mAh g ⁻¹	19.6 Wh cm ⁻³ at 45 W cm ⁻³	450 W cm ⁻³ at 6.8 Wh cm ⁻³	

References

- W. K. Tan, K. Asami, K. Maegawa, R. Kumar, G. Kawamura, H. Muto and A. Matsuda, *Mater. Today Commun.*, 2020, 25, 101540.
- 2 X. Li, T. Gao, Q. Liu, Y. Xu, J. Li and D. Xiao, Mater. Chem. Front., 2021, 5, 3636-3645.
- 3 X. Wu, H. Zhang, K. J. Huang and Z. Chen, Nano Lett., 2020, 20, 1700-1706.
- 4 X. Li, Y. Guo, T. Gao, P. Li, Z. Jin and D. Xiao, ACS Appl. Mater. Interfaces, 2021, 13, 57411-57421.
- 5 F. Yin, P. Yang, X. Chen, Q. Yang and J. Xie, *Batteries Supercaps*, 2022, 5, 202100289.
- 6 C. Wu, J. Zheng, J. Li, T. Jin, F. Wang, Q. Li, M. Chen, J. Qi, S. Gao and E. Shangguan, J. Alloys Compd., 2022, 895, 162593.
- J. Li, J. Zheng, C. Wu, H. Zhang, T. Jin, F. Wang, Q. Li and E. Shangguan, J. Alloys Compd., 2021, 874, 159873.
- 8 X. Li and D. Xiao, ChemElectroChem, 2020, 7, 3098-3105.
- 9 H. Shen, B. Lan, C. C. Li, J. Yan, J. Wang, Z. Wang, X. Hu, J. Liu and Y. Wu, J. Alloys Compd., 2021, 879, 160436.
- 10 C. Lai, L. Cheng, Y. Sun, K. Lee and B. Lin, Appl. Surf. Sci., 2021, 563, 150411.
- T. Zhang, C. Yang, S. Sun, Y. Huang, G. Meng, A. Han and J. Liu, *Sci. China Mater.*, 2021, 64, 1105-1113.
- 12 H. Zhang, Y. Liu, T. Meng, L. Ma, J. Zhu, M. Xu, C. M. Li, W. Zhou and J. Jiang, ACS Sustainable Chem. Eng., 2019, 7, 10995-11003.
- 13 Z. Qin, Y. Song, H. Y. Shi, C. Li, D. Guo, X. Sun and X. X. Liu, Chem. Eng. J., 2020, 400, 125874.
- 14 L. Ma, Y. Xu, Y. Liu, H. Zhang, J. Yao, N. Li, C. M. Li, W. Zhou and J. Jiang, ACS Sustainable Chem. Eng., 2019, 7, 17919-17928.
- 15 H. Zhang, L. Li, Y. Liu, T. Meng, L. Ma, M. Xu, J. Zhu, C. M. Li and J. Jiang, ACS Appl. Mater. Interfaces, 2019, 11, 42365-42374.
- 16 W. Qiu, H. Xiao, W. He, Y. Li and Y. Tong, Inorg. Chem. Front., 2018, 5, 1805-1815.
- 17 Y. Guo, C. Chen, Y. Li, Y. Chen, S. Li, T. Gao, H. Liu, W. Liu, D. Xiao and X. Li, *Appl. Surf. Sci.*, 2023, **623**,156995.
- 18 J. H. Choi, J. Kim, J. H. Noh, G. Lee, C. Yoon, U. C. Kim, I. H. Jang, H. Y. Kim and C. Choi, *Int. J. Mol. Sci.*, 2023, 24, 1067.
- 19 W. Li, Q. Xu, D. Kong, H. Yang, T. Xu, H. Wang, J. Zang, S. Huang, X. Li and Y. Wang, *Chem. Eng. J.*, 2023, **452**, 139251.