¹ Photoanode driven photoelectrocatalytic system for CO₂

2 reduction to formic acid based on lattice-dislocated Bi

3 nanosheets cathode

- 4 Weijie Cheng^a, Yuhong Wang^{a,*}, Shaoqing Guo^{a,*}, Qingqing Cheng^a, honghong
- 5 Zhao^{b*}, Lizhen Gao^{c,d}
- 6 aCollege of Environment and Resource, Taiyuan University of Science and
- 7 Technology, Taiyuan 030024, P. R. China.
- 8 E-mail: wangyuhong@tyust.edu.cn
- 9 bSchool of Materials Science and Engineering, North University of China, Taiyuan
- 10 030051, PR China
- 11 °College of Chemrtry and Chemical Engineering, Shanxi University, Taiyuan 030006,
- 12 P. R. China.
- ¹³ ^dSchool of Mechanical Engineering, University of Western Australia, 35 Stirling
 ¹⁴ Highway, WA 6009, Australia.
- 15 Keywords: CO₂ reduction, HCOOH, C_xN_y/BiVO₄, Lattice-dislocated Bi, wide
 16 potential window
- 17
- 18
- 19
- 20
- 21
- 22

9

14

2 Formula to calculation

3 Faradaic Efficiency (FE)¹

Faraday efficiency has become an important evaluation parameter for ERCHCOOH, which can be understood as the ratio between transferred the charge amount
generating a product and the total amount of charge transferred through the circuit,
directly reflecting the selectivity of the electrocatalyst to a target product.

8 For the liquid product:

$$FE = \frac{\alpha nF}{Q}$$

α is the quantity of electrons transferred to form the liquid product; n is the
quantity of moles for the liquid product; F is the Faraday constant (96485 C mol⁻¹)
and Q is the total number of the charge consumed during the reaction.

$$FE = \frac{Q_{gas}}{Q} = \frac{v \times y \times \alpha \times F \times P_0}{j \times R \times T_0}$$

15 *v* represents the flow rate of CO_2 ; y is the measured concentration of the gas 16 product in 1mL sample loop based on the calibration of the GC with a standard gas; α 17 is the number of electrons required to form a molecule of the gas product; F is the 18 Faraday constant (96485 C mol⁻¹); P₀ is the standard atmosphere; R is the universal 19 gas constant (8.314 J Mol⁻¹ K⁻¹); T₀ is the absolute temperature; and j is the total 20 current.

21 Mott-Schottky (MS)²

22 On the condition that a frequency of 1000 Hz and amplitude of 30 mV, the

Mott-Schottky plots of BiVO₄ and C_xN_y/BiVO₄ photoanode were recorded in a 0.01
 M PBS (pH 7.4) under the dark condition.

From the intercept of these Mott-Schottky curves, flat band potential arecalculated for all the samples using Equation:

$$\frac{1}{C^2} = \frac{2}{\left(e\varepsilon\varepsilon_0 N_d A^2\right)} \cdot \left(E_{app} - E_{FB} - kT/e\right)$$

Where C is the capacitance at the semiconductor/electrolyte interface, $F \cdot cm^{-2}$; e 6 7 is elementary charges, 1.60×10^{-19} C; ε is the relative dielectric constant, 68 for BiVO₄; $\varepsilon 0$ is the permittivity of the vacuum, 8.85×10^{-12} F·m⁻¹; N_D is the donor density, cm⁻³; 8 A is the surface area of photoanode, cm^2 ; E_{app} is the applied potential, E_{FB} is the flat 9 band potential, V; k is Boltzmanns constant, 1.38×10⁻²³ F·m⁻¹; T is absolute 10 temperature, K. At room temperature, kT/e is the temperature dependent term 25 mV 11 and can be ignored. the density of calculated carriers (ND) of CxNy/BiVO4 reached 12 10.9×10^{22} cm⁻³, which is substantially higher than pristine BiVO₄ photoanode (N_D= 13 $7.1 \times 10^{22} \text{ cm}^{-3}$). 14

15

16

17

18

20

19

2 Fig. S1 Lattice distance of HR-TEM image of (a) Bi and (b) lattice disloction Bi

4 Fig. S2 (a) HCOOH yield in BiVO₄@LD-Bi system and CxNy/BiVO₄@LD-Bi
5 system, (b) HCOOH yield corresponding to the number of cycles in BiVO₄@LD-Bi
6 and BiVO₄/C_xN_y@LD-Bi systems.

1 References

- 2 1. A. J. Rieth and D. G. Nocera, *Joule*, 2020, 4, 2051-2055.
- 3 2. S. Ravishankar, J. Bisquert and T. Kirchartz, Chemical Science, 2022, 13, 4828-
- 4 4837.
- 5