Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information:

Synthesis and Characterization of C₂ Symmetry Bis(Carboxamide) Pincer Ligands

Rufaro Razuwika*,a and Orde Q. Munroa,b

^a Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa

^b School of Chemistry, University of Leeds, Woodhouse Road, Leeds, LS2 9JT, UK

Email: <u>razuwika@gmail.com</u> Email: <u>o.munro@leeds.ac.uk</u>

Contents

IR instrumentation and spectra4
Figure S1. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1a4
Figure S2. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1b5
Figure S3. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1c6
Figure S4. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1d7
Figure S5. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1e8
Figure S6. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1f9
NMR spectroscopy10
Figure S7. ¹ H (a) and ¹³ C APT (Attached-Proton-Test) (b) NMR spectra of 1a in DMSO- <i>d</i> ₆ 10
Figure S8. ¹ H (a) and ¹³ C APT (b) NMR spectra of 1b in DMSO- <i>d</i> ₆ 11
Figure S9. ¹ H (a) and ¹³ C APT (b) NMR spectra of 1c in DMSO- <i>d</i> ₆ 12
Figure S10. ¹ H (a) and ¹³ C APT (b) NMR spectra of 1d in DMSO-d ₆ 13
Figure S11. ¹ H (a) and ¹³ C APT (b) NMR spectra of 1e in MeCN- <i>d</i> ₃ 14
Figure S12. ¹ H (a) and ¹³ C (b) NMR spectra of 1f in DMSO- <i>d6</i> 15
UV-vis spectroscopy
Figure S13. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1a in DMSO. The

Figure S18. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1f in DMSO. The absorption maxima are indicated for the experimental spectrum at 269 and 315 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm ⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 4 and 62 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max}
Table 1. Calculated energies for orbital levels involved in electron transition
Table 2. Difference in energy between different HOMO and LUMO energy levels in eV 22
Mass spectroscopy
Figure S19 . ESI-MS spectrum of 1a for $C_{23}H_{18}N_5O_2$ [M+H] ⁺ = 420.416. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode23
Figure S20 . ESI-MS spectrum of 1b for $C_{23}H_{18}N_5O_2$ [M+H] ⁺ = 420.146. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode23
Figure S21 . ESI-MS spectrum of 1c for $C_{23}H_{18}N_5O_2$ [M+H] ⁺ = 420.146. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode24
Figure S22 . ESI-MS spectrum of 1d for $C_{23}H_{18}N_5O_2$ [M+H] ⁺ = 420.146. The solid sample was dissolved in ACN with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode24
Figure S23 . ESI-MS spectrum of 1e for $C_{23}H_{18}N_5O_2 [M+H]^+= 426.167$. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode25
Figure S24 . ESI-MS spectrum of 1f for $C_{23}H_{18}N_5O_2$ [M+H] ⁺ = 522.1773. The solid sample was dissolved in methanol with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode25
Xray crystallography26
Figure S25. View of a pair of neighboring molecules in the crystal lattice of 1b. The non-classical hydrogen

Figure S25. View of a pair of neighboring molecules in the crystal lattice of **1b**. The non-classical hydrogen bond C22–H22…N4 (2.491(7) Å) tips the quinoline ring out of the mean plane encompassing the central pyridine ring of the pincer, with the dihedral angle C19–N1–C2–C1 measuring 162.87(5)°. The dihedral angle for the second quinoline group (C25–N3–C11–C10, 176.31(5)°) is almost coplanar with the amide group and central pyridine ring.

Figure S26. Space filling views of the hydrogen-bonded C_i symmetry dimer of structure **1a**. The diagram at the left is a view from above the dimer perpendicular to the plane of the pincer's central pyridine ring, while the

IR instrumentation and spectra

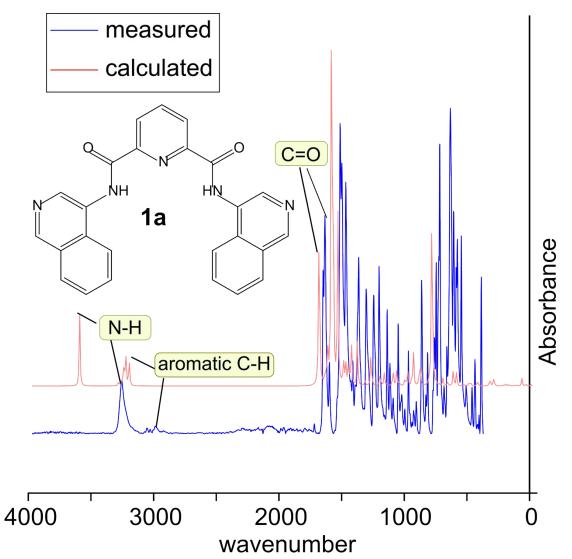


Figure S1. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1a.

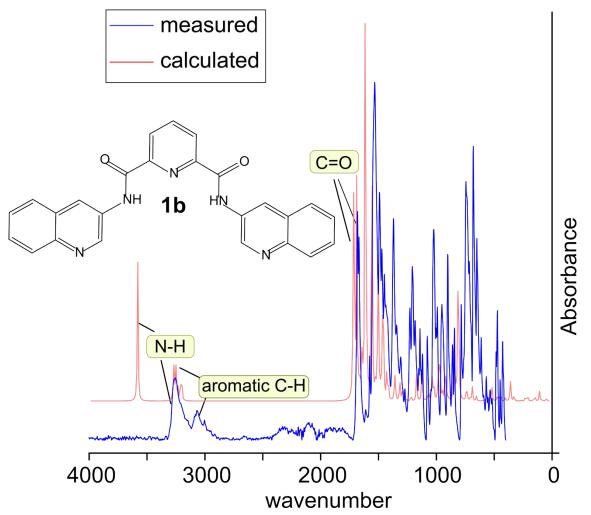


Figure S2. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1b.

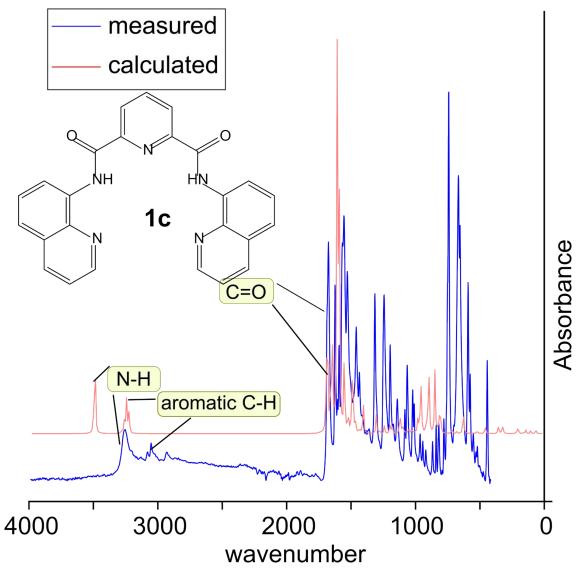


Figure S3. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1c.

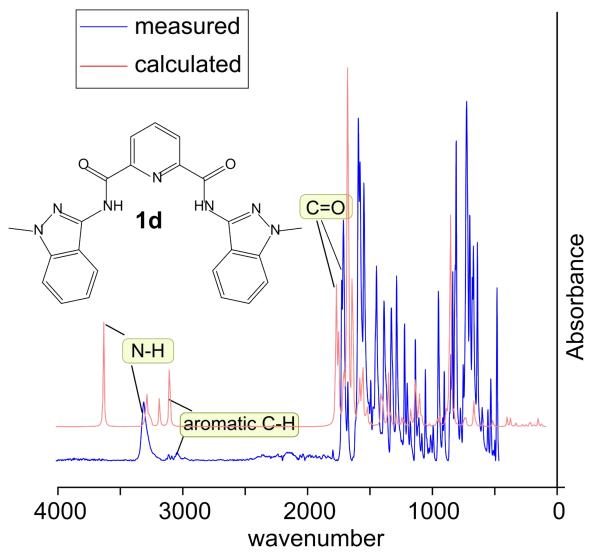


Figure S4. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1d.

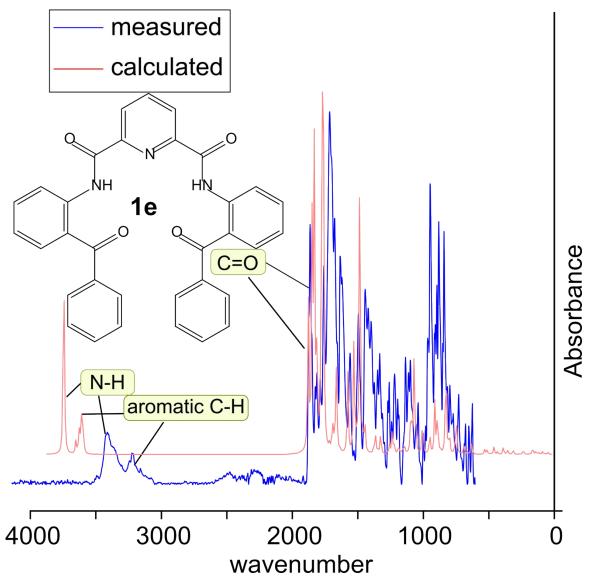


Figure S5. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1e.

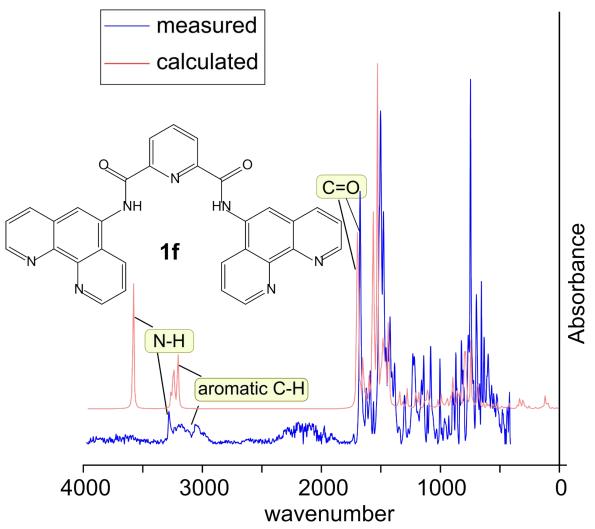


Figure S6. IR spectra for a powder sample (blue) and from DFT calculated data in a vacuum (red) of 1f.



Figure S7. ¹H (a) and ¹³C APT (Attached-Proton-Test) (b) NMR spectra of **1a** in DMSO-*d*₆.

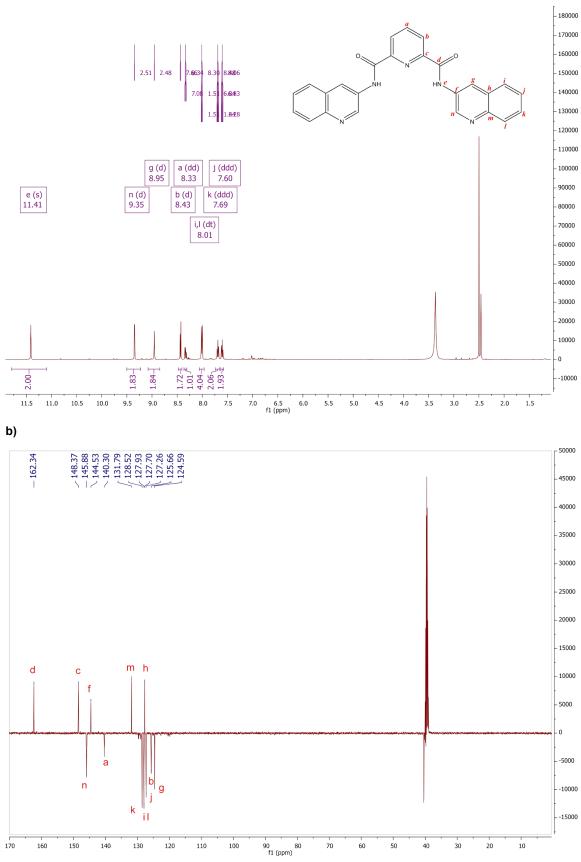


Figure S8. ¹H (a) and ¹³C APT (b) NMR spectra of 1b in DMSO- d_6 .

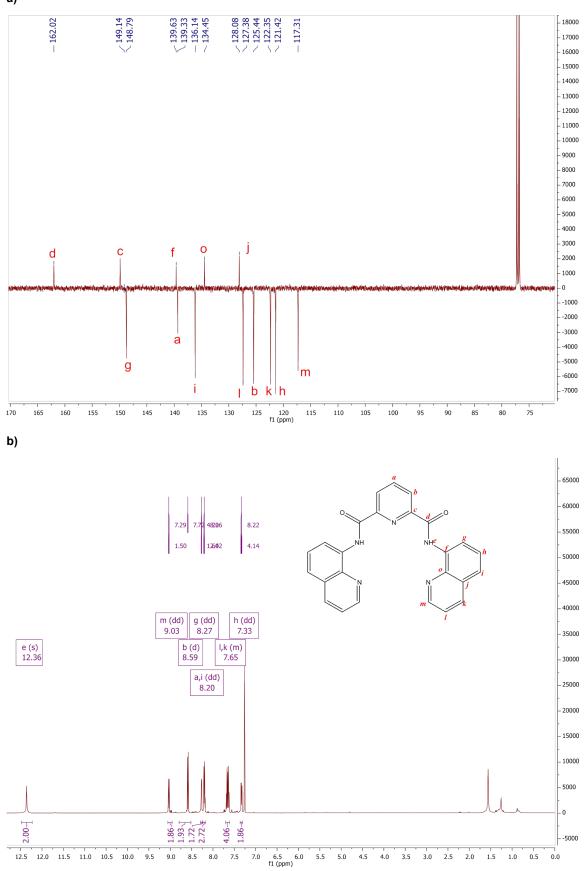


Figure S9. ¹H (a) and ¹³C APT (b) NMR spectra of 1c in DMSO- d_6 .

a)

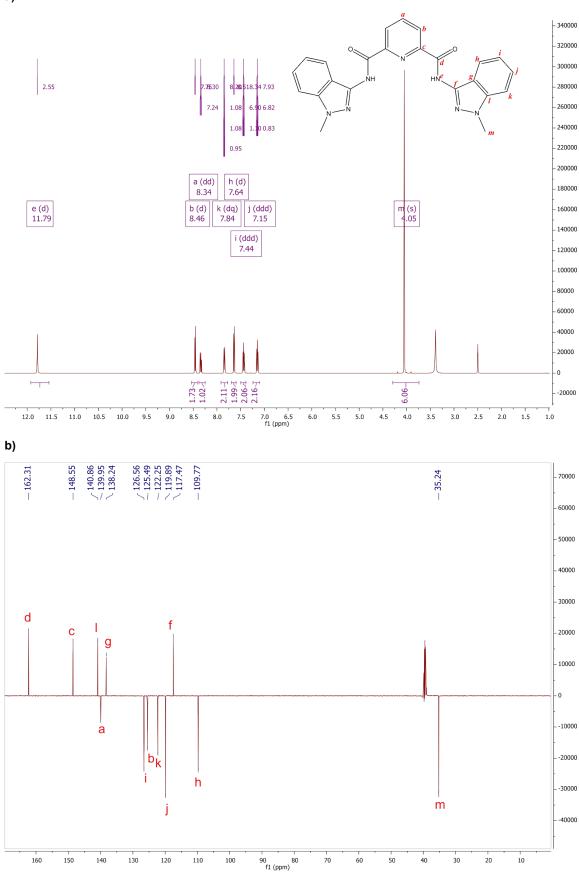


Figure S10. ¹H (a) and ¹³C APT (b) NMR spectra of 1d in DMSO- d_6 .

a)

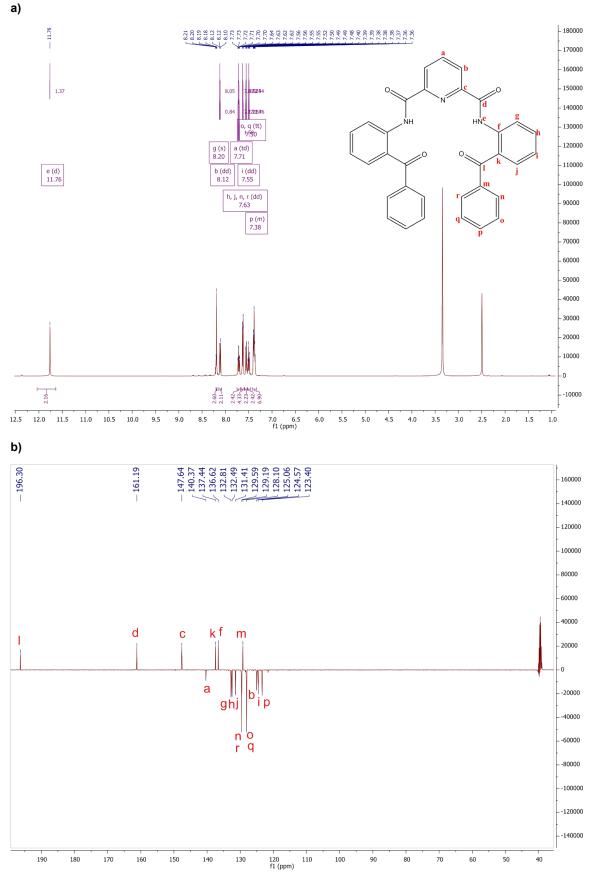


Figure S11. ¹H (a) and ¹³C APT (b) NMR spectra of 1e in MeCN- d_3 .

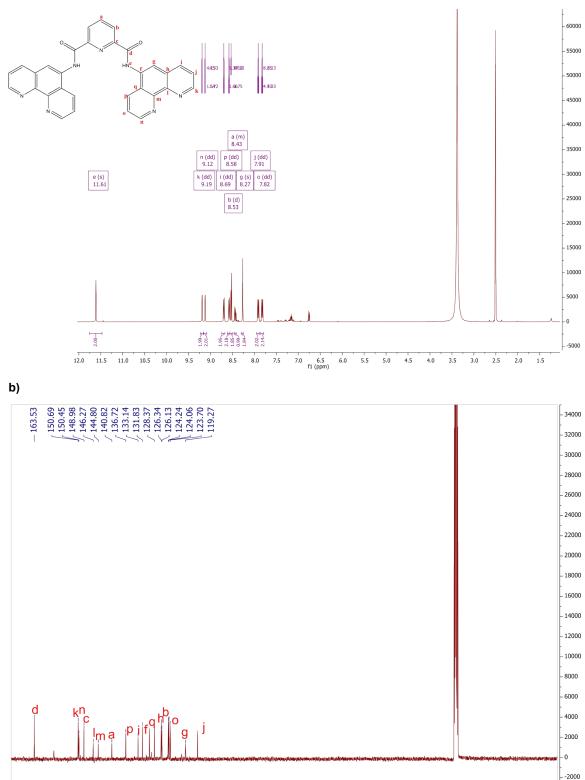
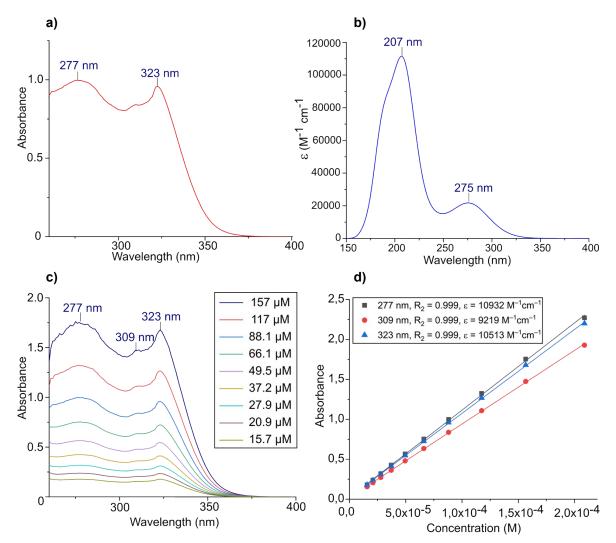



Figure S12. ¹H (a) and ¹³C (b) NMR spectra of **1f** in DMSO-*d6*.

f1 (ppm)

Figure S13. (a) Experimental and **(b)** DFT-calculated electronic absorption spectra of **1a** in DMSO. The absorption maxima are indicated for the experimental spectrum at 277, 309 and 323 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a band width of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). **(c)** Absorption spectra at a concentration range between 16 and 157 μ M, and **(d)** Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max}

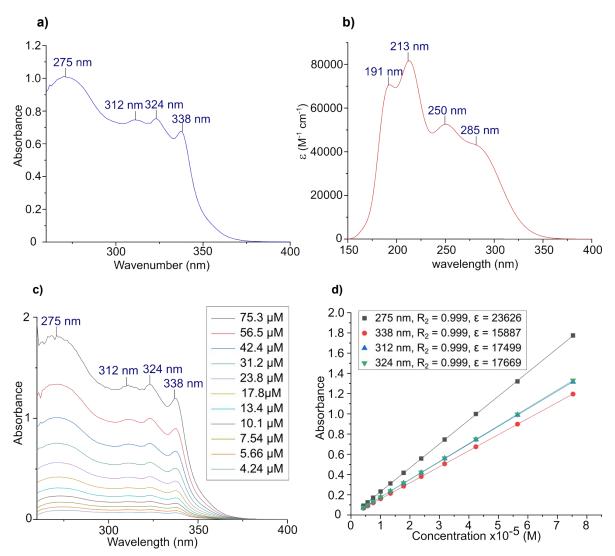


Figure S14. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1b in DMSO. The absorption maxima are indicated for the experimental spectrum at 275, 312, 324 and 338 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 4 and 75 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max} .

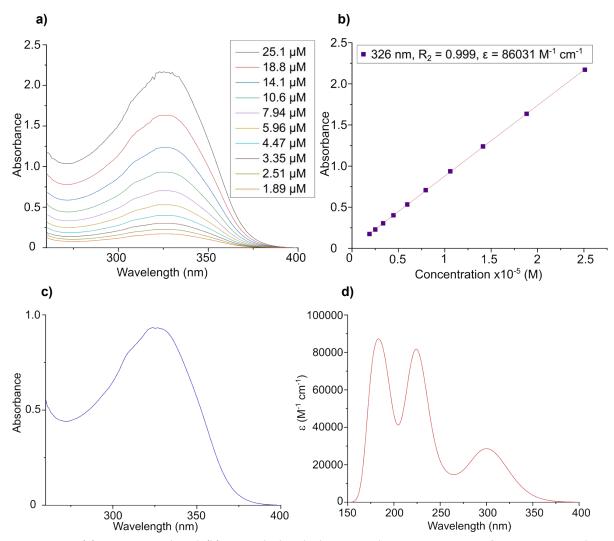


Figure S15. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1c in DMSO. The absorption maxima are indicated for the experimental spectrum at 326 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 2 and 25 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max} .

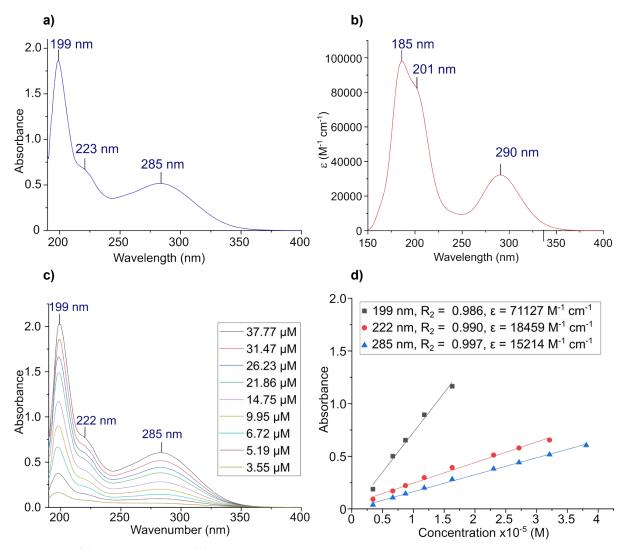


Figure S16. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1d in ACN. The absorption maxima are indicated for the experimental spectrum at 199, 223, 285 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 4 and 38 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max} .

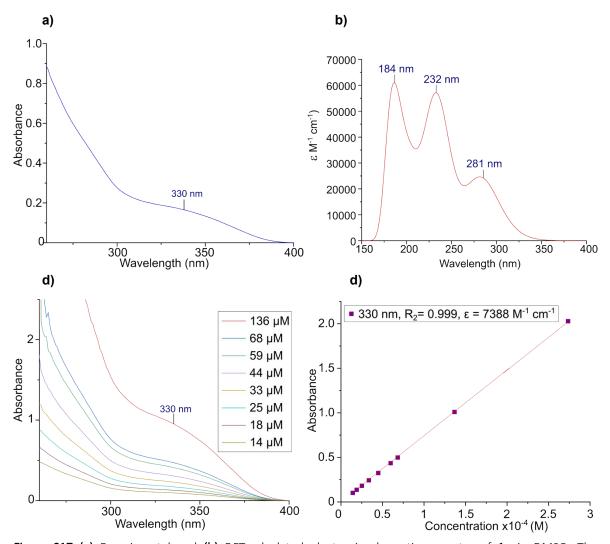


Figure S17 (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1e in DMSO. The absorption maxima are indicated for the experimental spectrum at 330 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 14 and 136 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max} .

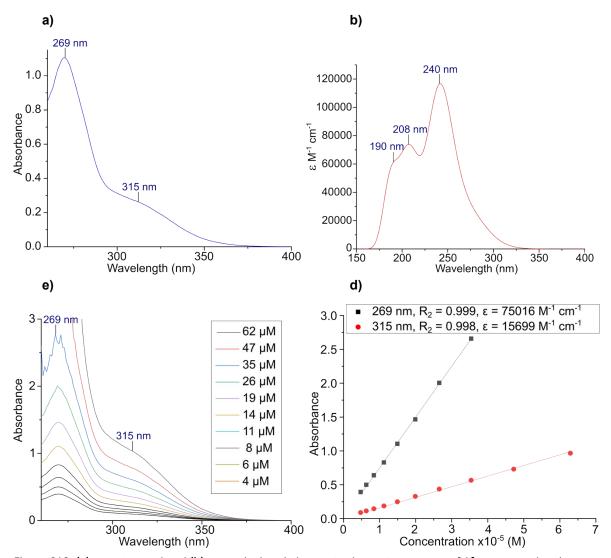


Figure S18. (a) Experimental and (b) DFT-calculated electronic absorption spectra of 1f in DMSO. The absorption maxima are indicated for the experimental spectrum at 269 and 315 nm. The absorption envelope for the DFT-calculated spectrum is plotted with a bandwidth of 2200 cm⁻¹ (full width at half maximum intensity, FWHM). (c) Absorption spectra at a concentration range between 4 and 62 μ M, and (d) Linear Beer-Lambert plot (Beer-Lambert's Law), to calculate the extinction coefficients at at the λ_{max} .

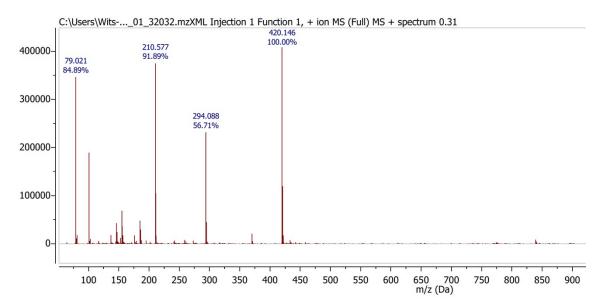
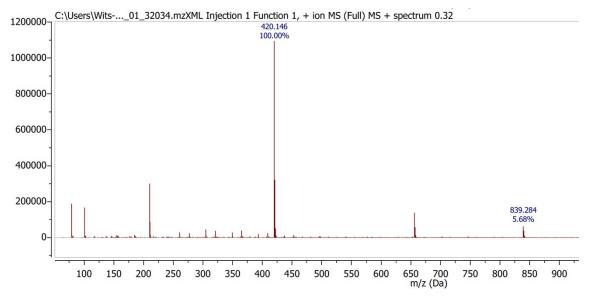
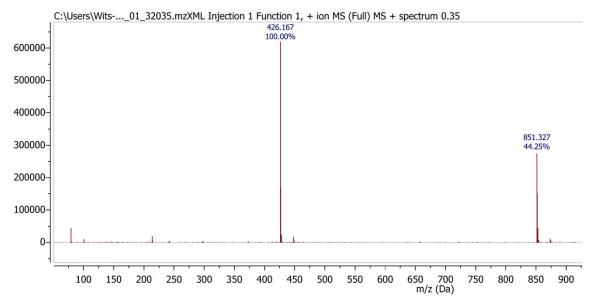

	1a	1b	1c	1d	1e	1f	
HOMO-3	-0.26131	-0.25499	-0.26722	-0.25245	-0.25803	-0.25291	
HOMO-2	-0.26052	-0.25494	-0.26520	-0.25198	-0.25551	-0.25287	
HOMO-1	-0.22929	-0.23079	-0.22469	-0.21323	-0.23921	-0.24191	
номо	-0.22759	-0.23079	-0.22379	-0.21190	-0.23754	-0.24092	
LUMO	-0.09851	-0.09771	-0.09416	-0.09335	-0.09723	-0.09549	
LUMO+1	-0.09815	-0.09720	-0.09242	-0.09136	-0.09199	-0.09421	
LUMO+2	-0.07289	-0.07690	-0.07370	-0.05764	-0.07768	-0.08091	
LUMO+3	-0.07080	-0.07457	-0.07275	-0.05730	-0.07368	-0.07950	

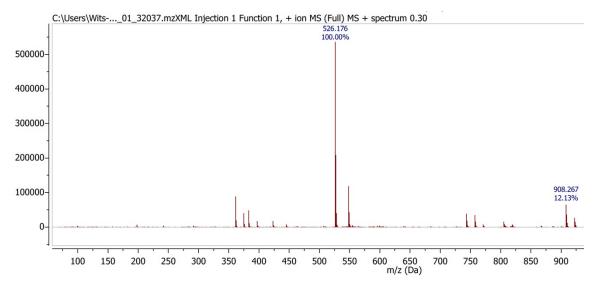
 Table 1. Calculated energies for orbital levels involved in electron transition.

 Table 2. Difference in energy between different HOMO and LUMO energy levels in eV

Energy levels		Energy difference (eV)							
		1a	1b	1c	1d	1e	1f		
номо	LUMO	-0.12908	-0.13308	-0.12963	-0.11855	-0.14031	-0.14543		
	LUMO+1	-0.12944	-0.13359	-0.13137	-0.12054	-0.14555	-0.14671		
	LUMO+2	-0.1547	-0.15389	-0.15009	-0.15426	-0.15986	-0.16001		
	LUMO+3	-0.15679	-0.15622	-0.15104	-0.1546	-0.16386	-0.16142		
HOMO-1	LUMO	-0.13078	-0.13308	-0.13053	-0.11988	-0.14198	-0.14642		
	LUMO+1	-0.13114	-0.13359	-0.13227	-0.12187	-0.14722	-0.1477		
	LUMO+2	-0.1564	-0.15389	-0.15099	-0.15559	-0.16153	-0.161		
	LUMO+3	-0.15849	-0.15622	-0.15194	-0.15593	-0.16553	-0.16241		
HOMO-2	LUMO	-0.16201	-0.15723	-0.17104	-0.15863	-0.15828	-0.15738		
	LUMO+1	-0.16237	-0.15774	-0.17278	-0.16062	-0.16352	-0.15866		
	LUMO+2	-0.18763	-0.17804	-0.1915	-0.19434	-0.17783	-0.17196		
	LUMO+3	-0.18972	-0.18037	-0.19245	-0.19468	-0.18183	-0.17337		
НОМО-3	LUMO	-0.1628	-0.15728	-0.17306	-0.1591	-0.1608	-0.15742		
	LUMO+1	-0.16316	-0.15779	-0.1748	-0.16109	-0.16604	-0.1587		
	LUMO+2	-0.18842	-0.17809	-0.19352	-0.19481	-0.18035	-0.172		
	LUMO+3	-0.19051	-0.18042	-0.19447	-0.19515	-0.18435	-0.17341		


Mass spectroscopy


Figure S19. ESI-MS spectrum of **1a** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 420.416. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.


Figure S20. ESI-MS spectrum of **1b** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 420.146. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.

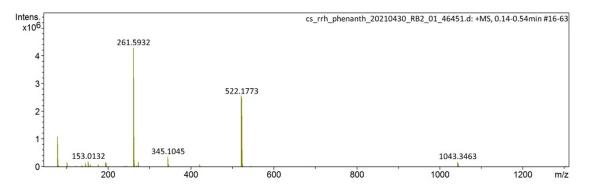

Figure S21. ESI-MS spectrum of **1c** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 420.146. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.

Figure S22. ESI-MS spectrum of **1d** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 420.146. The solid sample was dissolved in ACN with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.

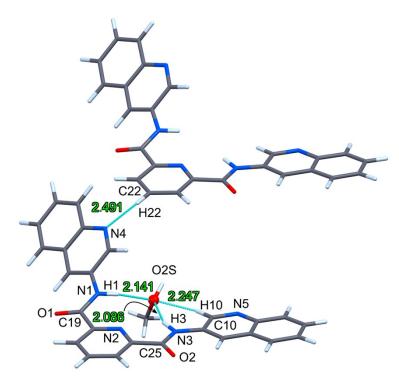


Figure S23. ESI-MS spectrum of **1e** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 426.167. The solid sample was dissolved in ACN (1 % DMSO) with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.

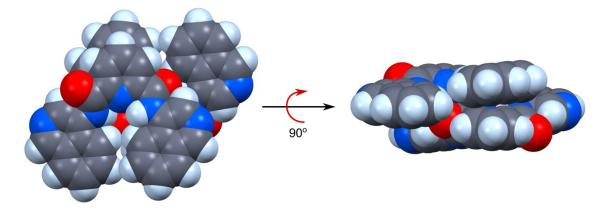


Figure S24. ESI-MS spectrum of **1f** for $C_{23}H_{18}N_5O_2$ [M+H]⁺= 522.1773. The solid sample was dissolved in methanol with 0.1% formic acid (v/v) and the spectrum was recorded in positive ESI mode.

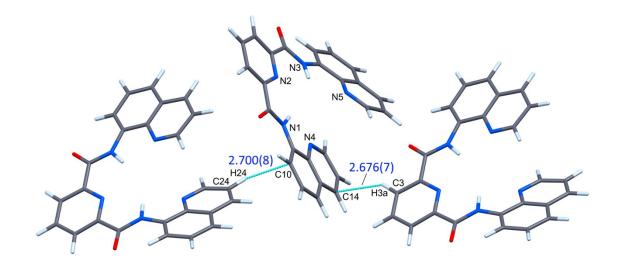

Xray crystallography

Figure S25. View of a pair of neighboring molecules in the crystal lattice of **1b**. The non-classical hydrogen bond C22–H22····N4 (2.491(7) Å) tips the quinoline ring out of the mean plane encompassing the central pyridine ring of the pincer, with the dihedral angle C19–N1–C2–C1 measuring 162.87(5)°. The dihedral angle for the second quinoline group (C25–N3–C11–C10, 176.31(5)°) is almost coplanar with the amide group and central pyridine ring.

Figure S26. Space filling views of the hydrogen-bonded C_i symmetry dimer of structure **1a**. The diagram at the left is a view from above the dimer perpendicular to the plane of the pincer's central pyridine ring, while the diagram at the right is the same view rotated counterclockwise through 90° to highlight the out-of-plane arrangement of the two isoquinoline rings. The conformation of each monomer in the crystalline solid state is markedly different from the lowest-energy conformer in the gas phase (DFT simulation), which highlights the impact of crystal packing and dimer formation on the observed conformation.

Figure S27. View depicting the short nonbonded interactions (blue stippled bonds) between the lower quinoline ring of **1c** and neighboring molecule heteroaromatic rings (contact distances are given in Å). The highlighted contacts constitute C–H··· π type hydrogen bonding interactions which planarise the amide group (N1) and quinoline substituent by neatly sandwiching the substituent group. The quinoline ring appended to the second amide nitrogen atom (N5) lacks short contacts involving its aryl ring carbon atoms and thus has a more canted dihedral angle relative to the plane of the central pyridine ring of the pincer.