Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Substituted 2-Arylquinoline and 2-Methyl-1,2,3,4-tetrahydroquinoline Derivatives with selective Anticancer Activity: Synthesis, Structure– Activity Relationships, and Molecular Modelling Insights

Carlos Mario Meléndez Gómez^{1*}, Gustavo Barraza¹, Felipe Sojo,^{2,3} Francisco

Arvelo,^{2,3} Vladimir V. Kouznetsov^{4*}

🖾 Carlos Mario Meléndez Gómez

carlosmelendez@mail.uniatlantico.edu.co

¹Grupo de Investigación en Química orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, A.A.1890, Barranquilla, Colombia.
²Centro de Biociencias Fundación Instituto de Estudios Avanzados-IDEA, Caracas Venezuela
³Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, código postal 1041, Caracas, Venezuela
⁴Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A. 680006, Bucaramanga, Colombia.

Figure S1. Structural alignment of the cores of IOX1, 2-Arylquinoline derivatives, and 2-Methyl-1,2,3,4-tetrahydroquinoline with RMSD of 0 Å and 2.42 Å, respectively.

3.1 Chemistry

Group F

2-Phenylquinoline (4)

White solid. M.p.: 67-69 °C. Yield 54 %. IR (KBr): v 1589, 1473, 1439, 849, 748 cm⁻¹. ¹H NMR (400 MHz): δ 8.22 (1H, d, J = 8.61 Hz, 3-H), 8.19-8.16 (1H, m, 8-H), 8.19-8.16 (2H, m, 2'-H_{Ph} and 6'-H_{Ph}), 7.88 (1H, d, J = 8.58 Hz, 4-H), 7.83 (1H, d, J = 8.08 Hz, 5-H), 7.73 (1H, ddd, J = 7.20, 7.20, 0.72 Hz, 6-H), 7.55-7.52 (1H, m, 7-H), 7.55-7.52 (2H, m, 3'-H_{Ph} and 5'-H_{Ph}), 7.47 (1H, t, J = 7.20 Hz, 4'-H_{Ph}); ¹³C NMR (CDCl₃, 100 MHz): δ 157.3, 148.3, 139.7, 136.7, 129.7, 129.6, 129.2, 128.9 (2C), 127.5 (2C), 127.4, 127.1, 126.2, 118.9. MS *m/z* (EI) 205 (M⁺). calcd for C₁₅H₁₁N: C, 87.77; H, 5.40; N, 6.82. Found: C, 87.73; H, 5.37; N, 6.79.

6-Ethyl-2-phenylquinoline (5)

White solid. M.p.: 63-66 °C. Yield 51%. IR (KBr): v 2960, 2895, 1493, 1443 cm⁻¹. ¹H NMR (400 MHz): δ 8.17-8.13 (2H, m, 2'-H_{Ph} and 6'-H_{Ph}), 8.15-8.13 (1H, m, 3-H), 8.11 (1H, d, J = 9.28 Hz, 8-H), 7.84 (1H, d, J = 8.56 Hz, 4-H), 7.61-7.59 (1H, m, 5-H), 7.61-7.59 (1H, m, 7-H), 7.53 (2H, t, J = 7.08 Hz, 3'-H_{Ph} and 5'-H_{Ph}), 7.46 (1H, t, J = 7.29 Hz, 4'-H_{Ph}), 2.85(2H, q, J = 7.59 Hz, CH₃-CH₂-), 1.36(3H, t, J = 7.58 Hz, CH₃-CH₂-); ¹³C NMR (100 MHz): δ 156.5, 147.1, 142.3, 139.8, 136.2, 130.8, 129.5, 129.0, 128.7 (2C), 127.4 (2C), 127.2, 124.9, 118.9, 28.8, 15.3. MS *m*/*z* (EI) 233 (M⁺). Calcd for C₁₇H₁₅N: C, 87.52; H, 6.48; N, 6.00. Found: C,87.51; H, 6.50; N, 6.02.

6-Nitro-2-phenylquinoline (6)

Brown solid. M.p.: 175-178 °C. Yield 56%. IR (KBr): v 3456, 1592, 1537, 1476, 873 cm⁻¹. ¹H NMR (400 MHz): δ 8.78 (1H, d, J = 2.41 Hz, 6-H), 8.47 (1H, dd, J = 9.22, 2.45 Hz, 7-H), 8.37 (1H, d, J = 8.68 Hz, 3-H), 8.26 (1H, d, J = 9.24 Hz, 8-H), 8.22-8.20 (2H, m, 2'-H_{Ph} and 6'-H_{Ph}), 7.56-7.54 (2H, m, 3'-H_{Ph} and 5'-H_{Ph}), 7.48-7.50 (1H, m, 4'-H_{Ph}); ¹³C NMR (100 MHz): δ 160.6, 150.4, 138.4, 131.4, 130.5, 129.0 (2C), 127.8 (2C), 127.5, 127.4, 124.3, 123.2, 120.6, 77.0. MS *m/z* (EI) 250 (M⁺). Calcd for C₁₅H₁₀N₂O₂: C, 71.99; H, 4.03; N, 11.19. Found: C, 71.98; H, 4.02; N, 11.22.

6-Fluoro-2-phenylquinoline (7)

Beige solid. M.p.: 128-131 °C. Yield 58 %. IR (KBr): v 1484, 1231, 831, 750, 686 cm⁻¹. ¹H NMR (400 MHz): δ 8.19-8.15 (1H, m, 8-H), 8.19-8.15 (2H, m, 2'-H_{Ph} and 6'-H_{Ph}), 8.15-8.13 (1H, m, 3-H), 7.86 (1H, d, J = 8.72 Hz, 4-H), 7.56-7.52 (2H, m, 3'-H_{Ph} and 5'- H_{Ph}), 7.50-7.46 (1H, m, 7-H), 7.50-7.46 (1H, m, 5-H), 7.43 (1H, dd, J = 8.80, 2.80 Hz, 4'-H_{Ph})); ¹³C NMR (100 MHz): δ 161.7, 156.7, 145.5, 139.4, 135.9, 132.2, 129.4, 128.8 (2C), 127.4 (2C), 119.8, 119.6, 110.5, 110.3; MS *m/z* (EI) 223 (M⁺). Calcd for C₁₅H₁₀FN: C, 80,70; H, 4,51; F, 8,51; N, 6,27. Found: C, 80.73; H, 4.50; F, 8.53; N, 6.29.

6-Chloro-2-phenylquinoline (8)

Beige solid. M.p.: 134-137 °C. Yield 50 %. IR (KBr): v 1495, 1223, 835, 752, 687 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 8.16-8.14 (1H, m, 3-H), 8.16-8.14 (1H, m, 8-H), 8.11 (2H, d, *J* = 7.76 Hz, 2'- H_{Ph} and 6'- H_{Ph}), 7.89 (1H, d, *J* = 8.48 Hz, 4-H), 7.80 (1H, d, *J* = 2.30 Hz, 6-H), 7.65 (1H, dd, *J* = 9.02, 2.33 Hz, 7-H), 7.53 (2H, t, *J* = 7.50 Hz, 3'-H_{Ph} and 5'-H_{Ph}), 7.47 (1H, t, *J* = 7.15 Hz, 4'-H_{Ph}); ¹³C NMR (100 MHz): δ 157.5, 146.6, 139.2, 135.8, 131.9, 131.3, 130.5, 129.5, 128.9 (2C), 127.7 (2C), 127.5, 126.1, 119.7. MS *m/z* (EI) 239 (M⁺). Calcd for C₁₅H₁₀ClN: C, 75.16; H, 4.21; Cl, 14.79; N, 5.84. Found: C, 75.16; H, 4.23; Cl, 14.81; N, 5.82.

6,7-methylenedioxo-2-Phenylquinoline (10)

Beige solid. M.p.: 109-111 °C. Yield 54%. IR (KBr): v 1457, 1228, 1029, 849, 748 cm⁻¹. ¹H NMR (CDCl₃): δ 8.11 (2H, dd, J = 7.11, 1.47 Hz, 2'-H_{Ph} and 6'-H_{Ph}), 7.98 (1H, d, J = 8.48 Hz, 3-H), 7.69 (1H, d, J = 8.49 Hz, 4-H), 7.51 (2H, dd, J = 7.12, 1.68 Hz, 3'-H_{Ph} and 5'-H_{Ph}), 7.46 (1H, s, 8-H), 7.03 (1H, s, 5-H), 6.08 (2H, s, -O-CH₂-O-); ¹³C NMR (100 MHz): δ 155.2, 150.7, 147.6, 146.4, 139.7, 135.4, 128.8, 128.7 (2C), 127.1 (2C), 124.0, 117.1, 106.1, 102.4, 101.6. MS *m*/*z* (EI) 249 (M⁺). Calcd for C₁₆H₁₁NO₂: C, 77.10; H, 4.45; N, 5.62. Found: C, 77.13; H, 4.43; N, 5.64.

Group G

2-(Phenyl-3',4'-dioxomethylen)-quinoline (11)

Yellow solid. M.p.: 90-92 °C. Yield 50%. IR (KBr): v 2884, 1594, 1495, 1248, 1042 cm⁻¹. ¹H NMR (400 MHz): δ 8.16 (1H, d, J = 8.56 Hz, 3-H), 8.12 (1H, d, J = 8.49 Hz, 4-H), 7.80 (1H, m, 8-H), 7.77 (1H, m, 5-H), 7.74 (1H, d, J = 1.71 Hz, 2'-H_{Ph}), 7.70 (1H, ddd, J= 8.41, 8.41, 1.45 Hz, 7-H), 7.65 (1H, dd, J = 8.07, 1.71 Hz, 6'-H_{Ph}), 7.50 (1H, ddd, J= 8.07, 8.07, 1,13 Hz, 6-H), 6.95 (1H, d, J = 8.13 Hz, 5'-H_{Ph}), 6.03 (2H, s, -OCH₂O-);¹³C NMR (CDCl₃): δ 156.6, 148.8, 148.4, 148.2, 136.6, 134.1, 129.6, 129.5, 127.4, 127.0, 126.0, 121.7, 118.5, 108.4, 107.9, 101.3. MS *m*/*z* (EI) 249 (M⁺). Calcd for C₁₆H₁₁NO₂: C, 77.10; H, 4.45; N, 5.62. Found: C, 77.13; H, 4.44; N, 5.62.

2-(Phenyl-3',4'-dioxomethylen)-6-methylquinoline (12)

Yellow solid. M.p.: 166-168. Yield 41%. IR (KBr): v 2898, 1587, 1490, 1460, 1246 cm⁻¹. ¹H NMR (400 MHz): δ 8.07 (1H, d, *J* = 8.56 Hz, 3-H), 8.00 (1H, d, *J* = 8.56 Hz, 4-H), 7.74 (1H, d, *J* = 8.56 Hz, 8-H), 7.72 (1H, d, *J* = 1.71 Hz, 2'-H_{Ph}), 7.63 (1H, dd, *J* = 8.31, 1.71 Hz, 6'-H_{Ph}), 6.92 (1H, d, *J* = 8.31 Hz, 5'-H_{Ph}), 7.54 (1H, m, 7-H), 7.52 (1H, d, *J* = 1.71 Hz, 5-H), 6.03 (2H, s,-OCH₂O-), 2.53 (3H, s, 6-CH₃); ¹³C NMR (100 MHz): δ 155.9, 148.7, 148.4, 146.8, 136.0, 135.9, 134.3, 131.9, 129.3, 127.0, 126.3, 121.6, 118.6, 108.4, 107.9, 101.3, 21.5. MS *m*/*z* (EI) 263 (M⁺). Calcd for C₁₇H₁₃NO₂: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.54; H, 4.97; N, 5.32.

2-(Phenyl-3',4'-dioxomethylen)-6-methoxyquinoline (13)

Brown solid. M.p.: 139-141. Yield 59 %. IR (KBr): v 2960, 2037, 1612, 1588, 1489 cm⁻¹. ¹H NMR (400 MHz): δ 8.06 (1H, d, J = 8.64 Hz, 3-H), 8.02 (1H, d, J = 9.21 Hz, 4-H), 7.69 (1H, d, J = 1.67 Hz, 2'-H_{Ph}), 7.61 (1H, dd, J = 8.12, 1.72 Hz, 6'-H_{Ph}), 7.74 (1H, d, J = 8.62 Hz, 8-H), 7.36 (1H, dd, J = 9.26, 2.79 Hz, 7-H), 7.07 (1H, s, J = 2.75 Hz, 5-H), 6.93 (1H, d, J = 8.12 Hz, 5'-H_{Ph}), 6.03 (2H, s, -OCH₂O-), 3.94 (3H, s, 6-OCH₃). MS *m*/*z* (EI) 279 (M⁺). Calcd for C₁₇H₁₃NO₃: C, 73.11; H, 4.69; N, 5.02. Found: C, 73.13; H, 4.70; N, 5.04.

2-(Phenyl-3',4'-dioxomethylen)-7-ethylquinoline (14)

Yellow solid. M.p.: 175-177. Yield 40 %. IR (KBr): v 2959, 2898, 1585, 1490, 1442 cm⁻¹. ¹H NMR (400 MHz): δ 8.16 (1H, d, J = 8.60 Hz, 3-H), 8.12 (1H, d, J = 8.68 Hz, 4-H), 7.79 (1H, d, J = 1.76 Hz, 2'-H_{Ph}), 7.77 (1H, d, J = 7.95 Hz, 5-H), 7.68 (1H, dd, J = 8.15, 1.74 Hz, 6'-H_{Ph}), 7.50 (1H, d, J = 1.55 Hz, 8-H), 7.49 (1H, dd, J = 7.98, 1.44 Hz, 6-H), 7.08 (1H, d, J= 8.15, 5'-H_{Ph}), 5.94 (2H, s,-OCH₂O-), 1.84 (2H, q, J = 7.95 Hz, 8-<u>CH₂CH₃-), 1.18 (3H, t, J= 7.95 Hz, 8-CH₂<u>CH₃-). MS *m*/*z* (EI) 277 (M⁺). Calcd for C₁₈H₁₅NO₂: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.99; H, 5.46; N, 5.07.</u></u>

2-(Phenyl-3',4'-dioxomethylen)-6,8-dimethoxyquinoline (15)

Yellow solid. M.p.: 146-148. Yield 62 %. IR (film): v 2955, 2899, 1607, 1478, 1451 cm⁻¹. ¹H NMR (400 MHz): δ 8.02 (1H, d, *J* = 8.65 Hz, 3-H), 7.76 (1H, d, *J* = 8.62 Hz, 4-H), 7.71 (1H, d, *J* = 1.71 Hz, 2'-H_{Ph}), 7.62 (1H, dd, *J* = 8.13, 1.76 Hz, 6'-H_{Ph}), 6.91 (1H, d, *J* = 8.07 Hz, 5'-H_{Ph}), 6.71 (1H, d, *J* = 2.47 Hz, 5-H), 6.65 (1H, d, *J* = 2.48 Hz, 7-H), 6.01 (2H, s, -OCH₂O-), 4.05 (1H, s, 8-OCH₃), 3.92 (1H, s, 6-H); ¹³C NMR (100 MHz): δ 158.0, 156.4, 153.3, 148.3, 148.2, 136.6, 135.5, 134.4, 128.6, 121.3, 119.4, 108.3, 107.8, 101.5, 101.2, 96.8, 56.1, 55.5. MS *m*/*z* (EI) 309 (M⁺). Calcd for C₁₈H₁₅NO₄: C, 69.89; H, 4.89; N, 4.53; Found: C, 69.88; H, 4.90; N, 4.52.

2-(Phenyl-3',4'-dioxomethylen)-5,8-dimethylquinoline (16)

Yellow solid. M.p.: 170-173. Yield 58 %. IR (KBr): v 2896, 1591, 1487, 1463, 1251 cm⁻¹. ¹H NMR (400 MHz): δ 8.28 (1H, d, J = 8.82 Hz, 3-H), 7.88 (1H, d, J = 1.67 Hz, 2'-H_{Ph}), 7.81 (1H, d, J = 8.82 Hz, 4-H), 7.73 (1H, dd, J = 8.15, 1.68 Hz, 6'-H_{Ph}), 7.44 (1H, d, J = 7.09 Hz, 7-H), 7.20 (1H, d, J = 7.09 Hz, 6-H), 6.95 (1H, d, J = 8.13 Hz, 5'- H_{Ph}), 6.04 (2H, s, -OCH₂O-), 2.84 (3H, s, 5-CH₃), 2.64 (3H, s, 8-CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 154.2, 148.6, 148.3, 147.2, 135.3, 134.4, 133.2, 131.8, 129.2, 126.2, 126.1, 121.4, 117.1, 108.3, 107.8, 101.2, 18.3, 17.8. MS *m/z* (EI) 277 (M⁺). Calcd for C₁₈H₁₅NO₂: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.94; H, 5.46; N, 5.03

N-(2-Methyl-1,2,3,4-tetrahydroquinolin-4-yl)acetamide (17)

IR (KBr): v 3247, 3335, 1640 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.18$ (d, J = 6.3 Hz, 3 H, 2-CH), 1.39 (q, J = 11.5 Hz, 1 H, H3_{ax}), 2.02 (s, 3 H, CH3-C=O), 2.22 (ddd, J = 12.4, 6.0, 2.3 Hz, 1 H, H3_{eq}), 3.50 (ddd, J = 11.3, 6.3, 2.3 Hz, 1H, H2), 3.53 (br s, 1 H, NH), 5.27 (ddd, J = 11.6, 9.2, 6.2 Hz, 1H, H4), 5.88 (d, J = 8.7 Hz, 1 H, HN-C=O), 6.46 (dd, J = 8.0, 1.0 Hz, 1H, H8), 6.65 (td, J = 7.4, 1.1 Hz, 1 H, H6), 7.00 (td, J = 8.8, 1.5 Hz, 1 H, H7), 7.07 (td, J = 7.7, 1.1 Hz, 1 H, H5). ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.1$, 23.4, 37.8, 46.1, 46.6, 114.3, 117.6, 121.4, 126.8, 128.1, 145.1, 170.1. GC-MS (EI) ($t_R = 17.39$ min): m/z (%) = 204 (18, M⁺), 130 (100), 144 (73). Anal. Calcd for C₁₂H₁₆N₂O: C, 70.56; H, 7.90; N, 13.71. Found: C, 70.65; H, 7.74; N, 13.55.

N-(6-Ethyl-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (18)

IR (KBr): v 3347, 3309, 1635 cm⁻¹. 1H NMR (200 MHz, CDCl₃): $\delta = 1.01$ (d, J = 7.9 Hz, 3 H, 2-CH₃), 1.03 (t, J = 7.9 Hz, 3 H, 6-CH₂CH₃), 1.09–1.05 (m, 1 H, H3), 1.32 (q, J = 11.2 Hz, 1 H, H3_{ax}), 1.53 (s, 1 H, NH), 1.94 (s, 3 H, CH₃- C=O), 2.07 (ddd, J = 10.4, 6.1, 4.0 Hz, 1 H, H3eq), 2.38 (q, J = 7.5 Hz, 2 H, 6-*CH*₂CH₃), 3.38 – 3.30 (m, 1 H, H2), 5.12 (dd, J = 11.2, 2.9 Hz, 1 H, H4), 6.37 6.73 (br s, 1 H, H5), 6.75 (d, J = 8.6 Hz, 1 H, H7). ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.8$, 21.8, 22.7, 28.0, 37.7, 46.0, 46.8, 115.0, 121.9, 126.3, 127.5, 134.2, 142.8, 171.2. CG-EM (EI) ($t_R = 18.55$ min): m/z (%) = 232 (21, M⁺). Anal. Calcd for C₁₄H₂₀N₂O: C, 72.38; H, 8.68; N, 12.06. Found: C, 72.55; H, 8.47; N, 12.18.

N-(6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (19)

IR (KBr): v 3293, 3371, 1639, 1211 cm^{-1.1}H NMR (400 MHz, CDCl₃): δ = 1.19 (d, *J* = 6.3 Hz, 3 H, 2-CH₃), 1.41 (q, *J* = 11.4 Hz, 1 H, H3_{ax}), 1.61–1.84 (m, 1 H, NH), 2.03 (s, 3H, CH₃-C=O), 2.28 (ddd, J = 12.4, 6.3, 2.1 Hz, 1 H, H3_{eq}), 3.43 (ddd, *J* = 11.5, 6.2, 2.1 Hz, 1 H, H2), 3.72 (s, 3 H, OCH₃), 5.31 (ddd, *J* = 11.3, 9.4, 6.1 Hz, 1 H, H4), 5.67 (d, *J* = 8.6 Hz, 1 H, HN-C=O), 6.48 (d, *J* = 8.7 Hz, 1 H, H8), 6.66 (dd, *J* = 8.7, 2.9 Hz, 1 H, H7), 6.70 (d, *J* = 2.7, 0.7)

Hz, 1 H, H5). ¹³C NMR (100 MHz, CDCl3): δ = 22.4, 23.7, 38.4, 46.6, 47.2, 56.0, 112.7, 114.5, 115.8, 123.0, 139.6, 152.4, 170.2. GC-MS (EI) (t_R = 20.60 min): m/z (%) = 234 (19, M⁺), 160 (100), 174 (54), 161 (20). Anal. Calcd for C₁₃H₁₈N₂O₂: C, 66.64; H, 7.74; N, 11.96. Found: C, 66.48; H, 7.90; N, 11.78.

N-(2,5,7-Trimethyl-1,2,3,4-tetrahydroquinolin-4-yl)acetamide (20)

IR (KBr): v 3347, 3301, 1627 cm⁻¹. 1H NMR (400 MHz, CDCl₃): $\delta = 1.18$ (d, J = 6.4 Hz, 3 H, 2-CH₃), 1.68 (q, J = 11.8 Hz, 1 H, H3_{ax}), 2.15 (s, 3 H, 7-CH₃), 2.17 (s, 3 H, 5-CH₃), 2.22 (s, 3 H, CH₃-C=O), 2.28 (ddd, J = 11.8, 6.3, 2.1 Hz, 1H, H3_{eq}), 3.32–3.40 (m, 1 H, H2), 3.71 (s, 1 H, NH), 5.19 (ddd, J = 15.1, 7.7, 7.4 Hz, 1 H, H4), 5.68 (d, J = 8.0 Hz, 1 H, HN-C=O), 6.21 (s, 1 H, H8), 6.37 (s, 1 H, H6). ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.2$, 20.8, 22.3, 22.9, 38.2, 43.9, 46.0, 113.4, 116.6, 121.5, 137.9, 138.2, 146.3, 168.9. CG-EM (EI) ($t_R = 19.93$ min): m/z (%) = 232 (24, M⁺), 158 (100), 172 (63). Anal. Calcd for C₁₄H₂₀N₂O: C, 72.38; H, 8.68; N, 12.06. Found: C, 72.15; H, 8.83; N, 11.87.

N-(6-Chloro-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (21)

IR (KBr): v 3383, 3290, 1734, 1635, 1496, 1342, 725 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.16 (d, *J* = 6.3 Hz, 3 H, 2-CH₃), 1.36 (q, *J* = 11.5 Hz, 1 H, H3), 2.03 (s, 3 H, CH3-C=O), 2.16 (ddd, *J* = 12.3, 6.0, 2.3 Hz, 1 H, H3), 3.47 (dqd, *J* = 12.3, 6.2, 2.2 Hz, 1 H, H2), 3.75 (br s, 1 H, NH), 5.15–5.23 (m, 1 H, H4), 6.00 (d, *J* = 9.1 Hz, 1 H, HN-C=O), 6.36 (d, *J* = 8.5 Hz, 1 H, H8), 6.90 (dd, *J* = 8.5, 2.3 Hz, 1 H, H7), 6.99–7.00 (m, 1 H, H5). ¹³C NMR (100 MHz, CDCl₃): δ = 22.2, 23.5, 38.0, 46.2, 46.7, 114.4, 117.7, 121.6, 127.0, 128.3, 145.3, 170.3. CG-EM (EI) (*t*_R = 21.09 min): *m*/*z* (%) = 238 (30, M⁺), 164 (100), 177 (51). Anal. Calcd for C₁₂H₁₅ClN₂O: C, 60.38; H, 6.33; N, 11.74. Found: C, 66.41; H, 7.24; N, 11.89.

Comment. Although some of these values are outside the expected range for high analytical purity, they are provided to illustrate the best values that could be obtained to date.

N-(2-methyl-6-fluoro- tetrahydroquinolin-4-yl)acet- amide (22)

IR (KBr): v 3343, 3294, 1630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) = 1.16 (d, J = 6.3 Hz, 3H, 2-CH₃), 1.41-1.32 (m, 1H, H3_{ax}), 2.02 (3H, s, CH3-C=O), 2.17 (ddd, J = 12.4, 6.1, 2.8 Hz, 1

H, H3_{ec}), 3.49-3.41 (m, 1 H, 2-H), 3.65 (s.a, 1 H, NH), 6.26-5.19 (m, 1 H, 4-H), 5.95 (d, J = 8.9 Hz, 1 H, NHC(O)), 6.39 (dd, J = 8.7, 4.7 Hz, 1 H, H8), 6.70 (ddd, J = 8.2, 6.7, 2.9 Hz, 1H, 7H), 6.78 (dd, J = 9.5, 2.0 Hz, 1 H, H5), ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.0$, 23.2, 37.6, 46.1, 46.8, 113.1, 113.3, 114.7, 114.9, 115.0, 115.1, 122.8, 141.3, 154.5, 156.8, 170.1 ppm; CG-EM $t_{\rm R}$: 17.52 min., m/z (%) = 222 (25, M^{+.}), 148 (100), 162 (70). Anal. Calcd for C₁₂H₁₅FN₂O: C, 64.85; H, 6.80; N, 12.60. Found: C, 66.67; H, 6.93; N, 12.51.

Comment. Although some of these values are outside the expected range for high analytical purity, they are provided to illustrate the best values that could be obtained to date.

NMR spectra

¹H NMR of 2-Phenylquinoline (4)

¹³C NMR of 2-Phenylquinoline (4)

¹³C NMR spectra of 6-Ethyl-2-phenylquinoline (5)

¹H NMR spectra of 6-Nitro-2-phenylquinoline (6)

¹³C NMR spectra of 6-Nitro-2-phenylquinoline (6)

¹H NMR spectra of 6-Fluoro-2-phenylquinoline (7)

¹³C NMR spectra of 6-Fluoro-2-phenylquinoline (7)

03	F2 [l.astudi	illo] en cdcl3	avance 40	0 rmnc13[h1	.] § ean-	cipxuc	25	.38	.46		.62	.53	të:	
	- 156		145		139	- 135	- 132	129	127		511	110	1	
								IP	1		\mathbf{Y}			
-														
								_	_					
									_					
_								_	_					
-														
+														
											-			
_									_					
					1.									
-									1					
	1													
أساس	فدفا مراء بمقاطاته	بريز لمتعالم تعليلاتها والتعالمان	ويتنادا والملازر ساريا فانتق	بريا بالالار وأراريا والالارية والالا	الرامية السالطين	ويشتره ألبلين	والمرابع المالية والمراجع	ير أبالقلي	ы И. с.	فتحاطط وبالدراء بالاراء الأبلية	الفلوينا لخواجها بسرير الأفن	والطعران أألده يعرجها والألأ	المنابع والمنابع المشار المتعادية والمتعاد	Line (data ta da
			ta de la compact			IT WITH	a historia internetionale	line & A	Y IN	la tuta a ti a ti a tila di ana	ault March and a line	s fright fir filmen in den se	and the second secon	MANALAWA MANANA MANA
	1 ·					• ·					1			
+								_						
_								_						
								_						
_	•	1	T T	1	+		1	-			1 1	1 1		

COSY spectra of 6-Fluoro-2-phenylquinoline (7)

¹H NMR spectra of 6-Chloro-2-phenylquinoline (8)

¹³C NMR spectra of 6-Chloro-2-phenylquinoline (8)

¹H NMR spectra of 6,7-methylenedioxo-2-Phenylquinoline (10)

¹³C NMR spectra of 6,7-methylenedioxo-2-Phenylquinoline (10)

¹H NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-quinoline (11)

¹³C NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-quinoline (11)

¹H NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-6-methoxyquinoline (13)

¹H NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-6,8-dimethoxyquinoline (15)

¹³C NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-6,8-dimethoxyquinoline (15)

¹H NMR spectra of 2-(Phenyl-3',4'-dioxomethylen)-5,8-dimethylquinoline (16)

¹³C NMR spectra of N-(2-Methyl-1,2,3,4-tetrahydroquinolin-4-yl)acetamide (17)

¹H NMR spectra of N-(6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (19)

¹³C NMR spectra of N-(6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (19)

¹H NMR spectra of N-(2,5,7-Trimethyl-1,2,3,4-tetrahydroquinolin-4-yl)acetamide (20)

¹³C NMR spectra of N-(2,5,7-Trimethyl-1,2,3,4-tetrahydroquinolin-4-yl)acetamide (20)

SNS 363, J. H., CDCB, Aaborato Bode RMN, ນີດິນອະຣິເອລດີ Nacional de Colombia. - 2.21 - 2.21 - 2.20 - 2.19 - 2.18 - 2.18 - 2.18 - 2.16 - 2.17 - 2.16 3.78 3.53 3.53 3.53 3.51 3.51 3.51 3.49 3.49 3.47 3.45 3.47 3.45 3.45 $\begin{array}{c} 1.42 \\ 1.39 \\ 1.36 \\ 1.33 \\ 1.18 \\ 1.17 \\ 1$ - 3000 - 2800 - 2600 - 2400 - 2200 - 2000 - 1800 - 1600 - 1400 - 1200 - 1000 - 800 - 600 400 -IIII - 200 - 0 -200 -400 1.09 3.28 1.05-[1.03<u>4</u> 3.21<u>4</u> 1.00<u>+</u> 1.00<u>+</u> 0.98-I 0.94 1.06-] -600 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0

¹H NMR spectra of N-(6-Chloro-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (21)

¹³C NMR spectra of N-(6-Chloro-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (21)

¹H NMR spectra of N-(6-Fluor-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (22)

¹³C NMR spectra of N-(6-Fluor-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (22)

DEPT 135 NMR spectra of N-(6-Fluor-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)acet- amide (22)

2.3 In silico studies

2.3.1 Molecular Docking studies

Table S1

The binding affinity of the 2-substituted (tetrahydro)quinolines 4–22 for the different biological targets.

Comp.										
	R	KDM5A	KDM4B	KDM4A	HER-2					
4	Н	-7.50	-6.51	-7.50	-8.09					
5	6-Et	-8.21	-6.89	-8.21	-8.13					
6	6-NO ₂	-7.81	-7.73	-7.81	-7.67					
7	6-F	-7.45	-6.26	-7.45	-7.77					
8	6-Cl	-8.02	-6.75	-8.02	-7.88					
9	6-OMe	-7.78	-6.59	-7.78	-7.72					
10	5,6-OCH ₂ O	-8.33	-7.03	-8.33	-8.03					
11	Н	-8.15	-7.19	-8.15	-8.02					
12	6-Me	-8.22	-7.50	-8.22	-8.24					
13	6-OMe	-7.93	-7.38	-7.93	-8.05					
14	Et	-8.15	-7.81	-7.93	-8.63					
15	6,8-OMe	-7.88	-7.40	-7.88	-8.22					
16	5,7-Me	-8.51	-7.76	-8.51	-8.78					
17	Н	-5.95	-6.35	-5.95	-6.90					
18	Et	-6.43	-6.48	-6.43	-7.04					
19	OMe	-6.03	-6.33	-6.03	-6.51					
20	5,7-Me	-6.76	-6.72	-6.76	-6.61					
21	Cl	-6.32	-6.28	-6.32	-6.81					
22	F	-5.87	-6.21	-5.87	-6.65					
DOX	-	-9.79	-5.17	-9.79	-7.72					

3.4 Molecular dynamics studies

3.4.1 Conformational analysis of the complexes formed by the proteins KDM5A and KDM4B.

Figure S2. Representative snapshots from the MD simulation at (A) 5 ns, (B) 10 ns, (C) 15 ns, (D) 20 ns, (E) 25 ns, and (F) 30 ns of the molecular dynamics trajectory of 18 with KDM5A.

Figure S3. Representative snapshots from the MD simulation at **(A)** 5 ns, **(B)** 10 ns, **(C)** 15 ns, **(D)** 20 - 30 ns, of the molecular dynamics trajectory of 12 with KDM4B.

2.3.3 In-silico ADME properties

Comp.	Group	MW ^a	cLogP ^b	TPSA ^c	HBAd	HBD ^e	ROTB	% ABS. ^g	LogS ^h
4	F	205.25	3.47	12.89	1	0	1	104.55	-6.22
5	F	233.31	4.13	12.89	1	0	2	104.55	-7.02
6	F	250.25	3.07	45.82	2	0	2	93.19	-5.97
7	F	223.25	3.86	12.89	2	0	1	104.55	-6.50
8	F	239.70	4.08	12.89	1	0	1	104.55	-6.84
9	F	279.30	3.51	22.12	2	0	2	101.37	-6.35
10	F	249.26	3.34	31.35	3	0	1	98.18	-5.98
11	G	249.26	3.35	31.35	3	0	1	98.18	-5.98
12	G	263.29	3.67	31.35	3	0	1	98.18	-6.36
13	G	279.29	3.34	40.58	4	0	2	94.99	-6.10
14	G	277.32	3.98	31.35	3	0	3	98.18	-4.84
15	G	309.32	3.3	49.81	5	0	3	91.82	-6.21
16	G	277.32	4	31.35	3	0	1	98.18	-6.74
17	Н	204.27	2.23	41.13	1	2	2	94.81	-3.60
18	Н	232.32	2.98	41.13	1	2	3	94.81	-4.39
19	Н	234.29	1.56	50.36	2	2	3	91.63	-3.73
20	Н	232.32	3.02	41.13	1	2	2	94.81	-4.38
21	Н	238.71	2.9	41.13	1	2	2	94.81	-4.22
22	Н	222.26	1.91	41.13	2	2	2	94.81	-3.88
DOX	-	543.50	0.48	206.08	12	7	5	37.90	-2.67
Lipinski's	s Rule	< 500	<5	< 140	<10	<5	< 10		

Table S2. ADME prediction results of the synthesized 2-substituted (tetrahydro)quinolines 4–22.

^{*a*} Molecular weight (g/mol); ^{*b*} Logarithm of the partition coefficient between n-octanol and water; ^{*c*} Polar Surface Area (Å²), ^{*d*} Number of hydrogen-bond acceptors; ^{*e*} Number of hydrogen-bond donors; ^{*f*} Number of rotatable bonds; ^{*g*} Percentage of absorption calculated by % Absorption = 109-(0.345 x TPSA); ^{*h*} Logarithm of aqueous solubility.