Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic supplementary information

Guanidine centered reactivity of CNN Pd(II) pincer complexes including carboxylate assisted N–H activation and $-CH_2- \rightarrow -C(O)-$ oxygenation

Nitish Kumar Sinha,^a Hilal Ahmad Khan,^b Chinnappan Sivasankar^b and Natesan Thirupathi^{*a} ^aDepartment of Chemistry, University of Delhi, Delhi 110 007, India ^bCatalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry 605 014, India

*Corresponding author: Email: tnat@chemistry.du.ac.in, thirupathi_n@yahoo.com.

Table of contents

1.	General consideration	S2			
2.	X-ray crystallography	S2			
3.	Experimental section	S3–S13			
4.	Crystallographic data	S14–S16			
5.	Electronic energies determined by DFT	S17			
6.	5. Molecular structures of $3^{1/2}$ toluene, $5^{1/2}$ toluene $1/2$ pivalic acid, 6,				
	and 15	S18–S20			
7.	and 15 Non-covalent interactions	S18–S20 S21–S28			
7. 8.	and 15 Non-covalent interactions NMR spectra of pincer complexes	S18–S20 S21–S28 S29–S115			
7. 8. 9.	and 15 Non-covalent interactions NMR spectra of pincer complexes Optimization of time for cycloisomerization reaction	S18–S20 S21–S28 S29–S115 S116			
7. 8. 9. 10	and 15 Non-covalent interactions NMR spectra of pincer complexes Optimization of time for cycloisomerization reaction . ESI-MS and elemental analyses data of complexes	\$18-\$20 \$21-\$28 \$29-\$115 \$116 \$117-\$135			

General considerations All chemicals were purchased from commercial vendors and used as received. Pd(OC(O)'Bu)₂ was prepared from Pd(OAc)₂ and pivalic acid as reported in the literature.¹ Guanidines **1** and **2** were prepared following the literature procedures.² The IR spectral data were obtained through ATR method from powdered samples on an IRAffinity–1 Shimadzu FTIR spectrometer in the frequency range 400–4000 cm⁻¹. Elemental analyses were performed on an Elementar Analysensysteme GmbH VarioEL V3.00. ¹H, ¹³C{¹H}, ¹⁹F NMR and ³¹P{¹H} NMR spectra were recorded on a JEOL ECX 400 NMR and Bruker AV-400 NMR spectrometers operating at 400, 100.5, 376.5 MHz and 161.8 MHz, respectively. All NMR measurements were made at room temperature unless mentioned otherwise. The δ (¹H) and δ (¹³C{¹H}) are reported in ppm relative to tetramethylsilane or residual solvent signal. Melting points were recorded on a Buchi melting point apparatus (Model: M–560) and the reported values are uncorrected.

X-Ray crystallography Details of data collection, structure solution and refinement for structurally characterized compounds are presented in Tables S1–S3. X-ray crystallographic diffraction data were collected on Oxford Xcalibur S diffractometer (4-circle kappa goniometer, Sapphire–3 CCD detector, omega scans, graphite monochromator and a single wavelength Enhance X-ray source with MoKα radiation) or Rigaku XtaLAB Synergy (4-circle goniometer, Hybrid Pixel Array Detector, omega scans, graphite monochromator and PhotonJet (Mo) X-ray source type with micro-focus sealed X-ray tube).³ Pre-experiment, data collection, data reduction and absorption corrections were performed with the CrysAlisPro software suite.⁴ The structures were solved and refined using the SHELX-2017 program package⁵ and SHELXL-2017/1 (within the Olex2 1.2 program package).⁶ Non-hydrogen atoms were refined anisotropically. C–H/N–H hydrogen atoms were placed in geometrically calculated positions by using a riding model. The molecular structures were created using Olex2 1.2 program package⁶ and Diamond software.⁷

DFT calculations The proposed pathway in Scheme 6 was evaluated computationally by using the B3LYP/6-31G*/ LANL2DZ level of theory^{8–15} and simulating the complexes by substituting hydrogen in place of -CF₃ and CH₃NC in place of XylNC. Using the Gaussian 09 software,¹⁶ DFT calculations were performed on **G**, **H**, **H**[•], **H**', **I**, **TS**, **J**, **K** and **K**' and all the molecules were successfully optimized without any imaginary frequency except **TS**. Solvent correction for toluene was performed using the polarizable continuum model on all the optimized systems.^{17–19} The energies of DFT modelled species are listed in Table S4.

Experimental section Some complexes were not characterized by ${}^{13}C{}^{1}H$ NMR spectroscopy due to their poor solubility in CDCl₃ and DMSO-*d*₆.

Complexes 3·1/2 **toluene, 4**·1/4 **toluene and 5**·1/2 **toluene**·1/2 **pivalic acid** A 25 mL Round Bottom (RB) was charged with the guanidine 1 (100 mg, 0.303 mmol) and Pd(OC(O)R')₂ (R' = CF₃ (101 mg, 0.304 mmol), Me (68.0 mg, 0.303 mmol) and 'Bu (93.5 mg, 0.303 mmol)) separately and the resulting heterogeneous mixture dispersed in a freshly distilled toluene (10 mL). The contents in the RB flask were stirred and heated at 65 °C for 6 h. The complete consumption of the guanidine was verified by TLC in each case using MeOH/ethyl acetate (1/4, v/v) mixture as the eluent. The reaction mixture was filtered while hot through a Whatman filter paper and the filtrate stored at RT for one week to afford 3·1/2 toluene as brown solid, **4**·1/4 toluene as colourless crystals and **5**·1/2 toluene·1/2 pivalic acid as pale yellow crystals suitable for SCXRD.

Data for 3.¹/₂ **toluene** Yield = 78% (130 mg, 0.237 mmol). M.p. 226.4 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 8.48 (s, 1 H, N*H*), 8.12 (d, *J*_{HH} = 4.8 Hz, 1 H, Ar*H*), 7.42–7.36 (m, 2 H, Ar*H*), 7.14–7.09 (m, 2 H, Ar*H*), 7.05 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.89 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 6.83–6.80 (m, 3 H, Ar*H*), 6.23 (s, 1 H, N*H*), 5.82 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 5.76 (br, 2 H, C*H*₂), 1.96, 1.40 (each s, 2 × 3 H, C*H*₃). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –74.44. Anal. Calcd for

C₂₃H₂₁F₃N₄O₂Pd (MW = 548.862 g/mol): C, 50.33; H, 3.86; N, 10.21; Found: C, 50.18; H, 3.70; N, 10.19. IR (KBr, cm⁻¹): v(NH) 3420 (w), 3215 (br); $v_a(OCO)$ 1674 (s); v(C=N) 1636 (s); $v_s(OCO)$ 1354 (m). ESI-MS (*m/z*): calcd for [M – OC(O)CF₃ + MeCN]⁺476.1067, found 476.1072, calcd for [M – OC(O)CF₃]⁺435.0801, found 435.0812.

Data for 4·¼ **toluene** Yield = 81% (121 mg, 0.244 mmol). M.p. 238.0 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 9.24 (s, 1 H, N*H*), 8.28 (d, *J*_{HH} = 4.8 Hz, 1 H, Ar*H*), 7.55 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 7.34 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.27–7.23 (m, 2 H, Ar*H*, toluene), 7.18–7.16 (m, 3 H, Ar*H*, toluene), 7.11 (t, *J*_{HH} = 6.6 Hz, 1 H, Ar*H*), 7.06 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.00 (t, *J*_{HH} = 7.4 Hz, 1 H, Ar*H*), 6.85–6.75 (m, 4 H, Ar*H*), 6.18 (s, 1 H, N*H*), 6.08 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 5.69 (br, 2 H, C*H*₂), 2.35 (s, 3 H, C*H*₃, toluene), 2.28, 1.95, 1.36 (each s, 3 × 3 H, C*H*₃). Anal. Calcd for C₂₃H₂₄N₄O₂Pd·¼ C₇H₈ (MW = 494.891 + 23.035 g/mol): C, 57.40; H, 5.06; N, 10.82; Found: C, 57.06; H, 5.01; N, 11.09. IR (KBr, cm⁻¹): v(NH) 3421 (m); v_a(OCO) 1641 (s); v(C=N) 1589 (s); v₈(OCO) 1381 (m). ESI-MS (*m*/*z*): calcd for [M – OC(O)Me + MeCN]⁺ 476.1067, found 476.1074, calcd for [M – OC(O)Me]⁺ 435.0801, found 435.0808.

Data for 5-½ toluene-½ pivalic acid Yield = 69% (112 mg, 0.209 mmol). M.p. 260.1 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 9.47 (s, 1 H, N*H*), 8.24 (d, J_{HH} = 5.2 Hz, 1 H, Ar*H*), 7.56 (br d, J_{HH} = 5.6 Hz, 1 H, Ar*H*), 7.28 (t, J_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.10 (t, J_{HH} = 6.4 Hz, 1 H, Ar*H*), 7.07–7.00 (m, 3 H, Ar*H*), 6.96 (br t, J_{HH} = 6.8 Hz, 1 H, Ar*H*), 6.74–6.64 (m, 5 H, Ar*H* + C*H*₂), 6.01 (s, 1 H, N*H*), 1.92 (s, 3 H, C*H*₃), 1.33 (s, 9 H, C(C*H*₃)₃), 1.29 (s, 3 H, C*H*₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 185.9, 161.5, 146.8, 146.3, 137.1, 136.7, 134.7, 134.4, 133.9, 130.9, 126.8, 126.6, 126.5, 126.3, 125.3, 121.7, 120.3, 120.1, 120.0, 60.4, 40.0, 38.7, 28.8, 27.5, 17.8, 16.8. Anal. Calcd for C₂₆H₃₀N₄O₂Pd·½ C7H₈ (MW = 536.972 + 46.070 g/mol): C, 60.77; H, 5.88; N, 9.61; Found: C, 61.12; H, 5.57; N, 9.73. IR (KBr, cm⁻¹): v(NH) 3420 (w); v₄(OCO) 1707 (s);

v(C=N) 1640 (m); $v_s(OCO)$ 1354 (m). ESI-MS (*m*/*z*): calcd for $[M - OC(O)'Bu + MeCN]^+$ 476.1067, found 476.1084; calcd for $[M - OC(O)'Bu]^+$ 435.0801, found 435.0818.

Complexes 6–9 A 25 mL RB was charged with the guanidine, **2** (100 mg, 0.228 mmol) and Pd(OC(O)R')₂ (R' = CF₃ (75.8 mg, 0.228 mmol), Me (51.2 mg, 0.228 mmol) and 'Bu (70.4 mg, 0.228 mmol)) separately and the resulting heterogeneous mixture dispersed in a freshly distilled toluene (10 mL). The contents in the RB flask were stirred and heated at 65 °C for 6 h. The complete consumption of the guanidine was verified by TLC in each case using ethyl acetate/*n*-hexane (1/1, v/v) mixture as the eluent. The reaction mixture was filtered while hot through a Whatman filter paper and the filtrate stored at RT for one week to afford **6**, an admixture of **7** + **9** and **8** as white, light brown and pale yellow solids, respectively. Complexes **6** and **7** were obtained as colorless crystals suitable for SCXRD in toluene at RT over the period of five days.

Data for 6 Yield = 66% (99.0 mg, 0.151 mmol). M.p. 255.0 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 8.75 (s, 1 H, N*H*), 8.12 (d, *J*_{HH} = 5.6 Hz, 1 H, Ar*H*), 7.71–7.68 (m, 2 H, Ar*H*), 7.48 (dt, *J*_{HH} = 7.6 Hz, *J*_{HH} = 1.6 Hz, 1 H, Ar*H*), 7.41 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.36 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.20–7.13 (m, 2 H, Ar*H*), 6.98–6.95 (m, 2 H, N*H* + Ar*H*), 6.64 (d, *J*_{HH} = 2.4 Hz, 1 H, Ar*H*), 5.97 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 5.69 (br, 2 H, C*H*₂). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –61.28, –61.38 and –74.50. Anal. Calcd for C₂₃H₁₅N₄F₉O₂Pd (MW = 656.805 g/mol): C, 42.06; H, 2.30; N, 8.53. Found: C, 42.33; H, 2.01; N, 8.76. IR (KBr, cm⁻¹): v(NH) 3433 (w), 3231 (br w); v_a(OCO) 1672 (s); v(C=N) 1647 (m); v_s(OCO) 1308 (m). ESI-MS (*m*/*z*): calcd for [M – OC(O)CF₃ + MeCN]⁺ 584.0501, found 584.0514.

Data for 7 + 9 Yield = 82% (113 mg, 0.187 mmol). M.p. 248.0 °C (decomp.). The ¹H NMR spectrum indicated the presence of two species in about 1.00:0.12 ratio as estimated from the integrals of aromatic and N*H* protons. ¹H NMR (CDCl₃, 400 MHz): δ 9.74 (s, 1 H, N*H*, 7),

9.35 (s, 1 H, N*H*, **9**), 8.23 (d, *J*_{HH} = 5.2 Hz, 1 H, Ar*H*, **7**), 8.12 (d, *J*_{HH} = 5.2 Hz, 1 H, Ar*H*, **9**), 7.90 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*, **7**), 7.72 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*, **9**), 7.68 (d, *J*_{HH} = 8.8 Hz, 1 H, Ar*H*, **9**), 7.64 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*, **7**), 7.50 (t, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*, **9**), 7.41–7.30 (m, 5 H, Ar*H*, **7** (3 H) and **9** (2 H)), 7.21 (t, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*, **9**), 7.13–7.05 (m, 4 H, Ar*H*, **7** (2 H) + **9** (2 H)), 6.96 (t, *J*_{HH} = 7.6 Hz, 1 H, **7**), 6.92 (t, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*, **9**), 6.85 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*, **7**), 6.55 (s, 1 H, N*H*, **9**), 6.48 (s, 1 H, N*H*, **7**), 6.30 (d, *J*_{HH} = 5.2 Hz, 1 H, Ar*H*, **9**), 6.01 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*, **7**), 5.64 (br, 2 H, C*H*₂, **7**), 5.57 (br, 2 H, C*H*₂, **9**), 2.20 (s, 6 H, C*H*₃, **7** (3 H) and **9** (3 H)). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –61.37 (**7**), –61.40 (**9**), –61.47 (**9**), –61.54 (**7**). Anal. Calcd for C₂₃H₁₈F₆N₄O₂Pd (MW = 602.833 g/mol): C, 45.83; H, 3.01; N, 9.29. Found: C, 45.88; H, 2.63; N, 9.64. IR (KBr, cm⁻¹): ν (NH) 3434 (w); ν_a (OCO) 1652 (s); ν (C=N) 1607 (m); ν_s (OCO) 1311 (m). ESI-MS (*m*/*z*): calcd for C₂₁H₁₅F₆N₄Pd [M – OC(O)Me + MeCN]⁺

Data for 8 Yield = 88% (129 mg, 0.200 mmol). M.p. 240.0 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.03 (s, 1 H, NH), 8.19 (d, *J*_{HH} = 5.2 Hz, 1 H, Ar*H*), 8.02 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.63 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.38–7.32 (m, 2 H, Ar*H*), 7.27 (m, 2 H, Ar*H*), 7.16–7.11 (m, 2 H, Ar*H*), 6.93 (t, *J*_{HH} = 7.8 Hz, 1 H, Ar*H*), 6.81 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.44 (s, 1 H, N*H*), 6.38 (br, 2 H, C*H*₂), 1.14 (s, 9 H, C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 186.3, 161.2, 147.1, 146.8, 140.1, 137.3, 135.0, 133.6, 133.0, 131.5, 129.5 (q, ²*J*_{CF} = 29.8 Hz), 129.2, 128.3, 127.4 (q, ³*J*_{CF} = 4.8 Hz), 124.1, 123.3 (each q, ¹*J*_{CF} = 273.6 Hz), 122.8 (q, ³*J*_{CF} = 3.8 Hz), 122.1, 120.2, 119.6, 114.0 (q, ²*J*_{CF} = 28.8 Hz), 60.2, 39.8, 28.5. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ -61.33, -61.52. Anal. Calcd for C₂₆H₂₄N₄F₆O₂Pd (MW = 644.914 g/mol): C, 48.42; H, 3.75; N, 8.69. Found: C, 48.72; H, 3.60; N, 8.73. IR (KBr, cm⁻¹): v(NH) 3438 (w); v_a(OCO) 1653 (s); v(C=N) 1605 (m); v_s(OCO) 1311 (m). ESI-MS (*m*/z): calcd for C_{21H15}F₆N₄Pd [M – OC(O)/Bu +

MeCN]⁺ 584.0501, found 584.0523; calcd for $C_{21}H_{15}F_6N_4Pd [M - OC(O)'Bu]^+$ 543.0236, found 543.0254.

Procedure for pure 7

A 25 mL RB was charged with the guanidine, **2** (100 mg, 0.228 mmol) and Pd(OAc)₂ (51.2, 0.228 mmol) and the resulting heterogeneous mixture dispersed in a freshly distilled toluene (10 mL). The contents in the RB flask were stirred at RT for 6 h. The complete consumption of the guanidine was verified by TLC using ethyl acetate/*n*-hexane (1/1, v/v) mixture as the eluent. The reaction mixture was filtered through a Whatman filter paper and stored at RT for one week to afford **7** as white solid in 86% (118 mg, 0.195 mmol) yield.

Data for 7 Yield = 86% (118 mg, 0.196 mmol). M.p. 249.0 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 9.80 (s, 1 H, N*H*), 8.23 (d, *J*_{HH} = 5.6 Hz, 1 H, Ar*H*), 7.90 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 7.64 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 7.39–7.30 (m, 3 H, Ar*H*), 7.14–7.08 (m, 2 H, Ar*H*), 6.95 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.85 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 6.47 (s, 1 H, N*H*), 6.01 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 5.63 (br, 2 H, C*H*₂), 2.20 (s, 3 H, C*H*₃). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ – 61.28, –61.45. Anal. Calcd for C₂₃H₁₈F₆N₄O₂Pd (MW = 602.833 g/mol): C, 45.83; H, 3.01; N, 9.29. Found: C, 45.88; H, 2.63; N, 9.64. IR (KBr, cm⁻¹): v(NH) 3434 (w); v_a(OCO) 1654 (s); v(C=N) 1617 (m); v_s(OCO) 1314 (m).

Complexes 10 and 11 A 25 mL RB was charged with **3** (104 mg, 0.190 mmol) or **6** (125 mg, 0.190 mmol) and PPh₃ (50.0 mg, 0.190 mmol) separately, dissolved the mixture in CH_2Cl_2 (10 mL) and set to stir for 24 h at RT. The reaction mixture was filtered through a Whatman filter paper, the filtrate layered with toluene and stored at RT for one week to afford **10** and **11** as colorless crystals.

Data of 10 Yield = 82% (126 mg, 0.155 mmol). M.p. 203.9 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.15 (s, 1 H, NH), 7.67–7.61 (m, 8 H, ArH), 7.46 (dt, *J*_{HH} = 7.6 Hz, *J*_{HH} = 1.6 Hz, 3 H, ArH), 7.39–7.35 (m, 7 H, ArH), 7.32–7.30 (m, 1 H, ArH), 7.23–7.19 (m, 3 H, ArH), 6.95 (s, 1 H, NH), 6.72–6.69 (m, 1 H, ArH), 6.58–6.54 (m, 2 H, ArH), 6.03 (t, *J*_{HH} = 7.8 Hz, 1 H, ArH), 5.61 (d, *J*_{HH} = 2.0 Hz, 2 H, CH₂), 2.36, 1.75 (each s, 2 × 3 H, CH₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 164.2, 161.6 (q, ²*J*_{CF} = 32.7 Hz), 149.5, 149.0, 138.8, 138.6, 138.4, 136.5, 136.1, 135.4, 135.0, 134.9, 131.6, 131.4, 130.4, 129.9, 129.0, 128.9, 128.0, 127.6, 127.3, 127.0, 123.6, 122.5, 122.3, 121.8, 117.3 (q, ¹*J*_{CF} = 295.4 Hz), 58.5, 18.2, 17.9. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –74.99. ³¹P{¹H} NMR (CDCl₃, 161.8 MHz): δ 35.91. Anal. Calcd for C₄₁H₃₆N₄F₃O₂PPd (MW = 811.154 g/mol): C, 60.71; H, 4.47; N, 6.91. Found: C, 60.72; H, 4.39; N, 6.88. IR (KBr, cm⁻¹): ν (NH) 3412 (w); ν_a (OCO) 1685 (s); ν (C=N) 1620 (m); ν_s (OCO) 1436 (m). Λ_M (Ω ⁻¹ cm² mol⁻¹, MeCN) = 72.36 (10⁻³ M).

Data of 11 Yield = 85% (148 mg, 0.161 mmol). M.p. 184.7 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.81 (s, 1 H, N*H*), 7.82–7.79 (m, 2 H, Ar*H*), 7.74–7.62 (m, 9 H, Ar*H*), 7.57–7.53 (m, 1 H, Ar*H*), 7.50–7.47 (m, 3 H, Ar*H*), 7.39 (dt, $J_{HH} = 7.4$ Hz, $J_{HH} = 2.0$ Hz, 6 H, Ar*H*), 7.24 (d, $J_{HH} = 5.6$ Hz, 1 H, Ar*H*), 6.94–6.88 (m, 2 H, Ar*H* (1 H), N*H* (1 H)), 6.78 (d, $J_{HH} = 2.4$ Hz, 1 H, Ar*H*), 6.73 (t, $J_{HH} = 6.6$ Hz, 1 H, Ar*H*), 6.13 (t, $J_{HH} = 7.6$ Hz, 1 H, Ar*H*), 5.75 (br, 2 H, C*H*₂). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –60.73, –61.14, –75.04. ³¹P{¹H} NMR (CDCl₃, 161.8 MHz): δ 36.34. Anal. Calcd for C₄₁H₃₀N₄F₉O₂PPd (MW = 919.096 g/mol): C, 53.58; H, 3.29; N, 6.10; Found: C, 53.81; H, 3.05; N, 6.19. IR (KBr, cm⁻¹): v(NH) 3437 (w); v_a(OCO) 1683 (s); v(C=N) 1598 (m); v_s(OCO) 1420 (m). Λ_M (Ω^{-1} cm² mol⁻¹, MeCN) = 75.84 (10⁻³ M).

Complex 12 In a 5 mm Wilmad NMR tube fitted with a w/J Young valve, complex **7** (22.9 mg, 0.038 mmol) and PPh₃ (10.0 mg, 0.038 mmol) were added and dissolved in CDCl₃ (0.6 mL). The

contents in the NMR tube was shaken well for about 5 min and ¹H, ¹⁹F and ³¹P{¹H} NMR spectra were recorded. Complex **12** could not be isolated in solid form as it reverts back to the respective starting materials during crystallization. Hence, **12** was characterized only by ¹H, ¹⁹F and ³¹P{¹H} NMR spectroscopies.

Data of 12 ¹H NMR (CDCl₃, 400 MHz): δ 7.74–7.65 (m, 3 H, Ar*H*), 7.61–7.50 (m, 9 H, Ar*H* (8 H) + N*H* (1 H)), 7.44–7.41 (m, 3 H, Ar*H*), 7.37–7.34 (m, 8 H, Ar*H* (7 H)+ N*H* (1 H)), 7.25 (d, *J*_{HH} = 5.2 Hz, 1 H, Ar*H*), 6.91 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.88 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 6.70 (t, *J*_{HH} = 6.0 Hz, 1 H, Ar*H*), 6.08 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 5.76 (s, 2 H, C*H*₂), 1.89 (s, 3 H, C*H*₃). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –60.72, –61.40. ³¹P{¹H} NMR (CDCl₃, 161.8 MHz): δ 34.71.

Complex 13 A 25 mL RB was charged with 2,6-xylylisocyanide (20.0 mg, 0.152 mmol) and **3** (83.4 mg, 0.152 mmol) the resulting mixture dissolved in CH₂Cl₂ (10 mL) and set to stir at RT for 24 h. The reaction mixture was filtered through a Whatman filter paper, the filtrate layered with toluene and stored at RT for one week to afford **13** as light pink crystals, respectively.

Data of 13 Yield = 80% (82.7 mg, 0.122 mmol). M.p. 126.6 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.37 (s, 1 H, NH), 8.51 (d, $J_{HH} = 5.6$ Hz, 1 H, ArH), 7.98–7.90 (m, 2 H, ArH), 7.56 (d, $J_{HH} = 7.6$ Hz, 1 H, ArH), 7.39–7.34 (m, 4 H, ArH), 7.31–7.29 (m, 2 H, ArH), 7.24 (br s, 1 H, ArH), 7.17 (d, $J_{HH} = 7.6$ Hz, 1 H, ArH), 6.90 (d, $J_{HH} = 6.8$ Hz, 1 H, ArH), 6.78 (s, 1 H, NH), 6.66 (t, $J_{HH} = 7.6$ Hz, 1 H, ArH), 5.82 (s, 2 H, CH₂), 2.56 (s, 2 × 3 H, CH₃), 2.36, 1.69 (each s, 2 × 3 H, CH₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 163.4, 161.6 (q, ² $J_{CF} = 33.4$ Hz), 148.3, 147.4, 141.3, 139.2, 137.0, 135.9, 135.3, 135.0, 131.8, 130.7, 129.1, 128.8, 128.6, 128.4, 127.9, 125.6, 123.5, 123.4, 123.3, 121.8, 117.4 (q, ¹ $J_{CF} = 296.1$ Hz), 60.5, 19.1, 18.0, 17.8. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –75.08. Anal. Calcd for C₃₂H₃₀N₅F₃O₂Pd (MW = 680.040 g/mol): C,

56.52; H, 4.45; N, 10.30. Found: C, 56.76; H, 4.51; N, 10.37. IR (KBr, cm⁻¹): v(NH) 3411 (w); v(C=N) 2175 (s); v_a (OCO) 1674 (s); v(C=N) 1633 (m); v_s (OCO) 1445 (m). Λ_M (Ω^{-1} cm² mol⁻¹, MeCN) = 59.29 (10⁻³ M).

Complexes 14 A 25 mL RB was charged with 2,6-xylylisocyanide (20.0 mg, 0.152 mmol) and **6** (99.8 mg, 0.152 mmol), the resulting mixture dissolved in CH₂Cl₂ (10 mL) and set to stir at RT for 24 h. The reaction mixture was filtered through a Whatman filter paper, layered with toluene and stored at RT for one week to afford **14** as light pink crystals.

Data of 14 Yield = 81% (97.0 mg, 0.123 mmol). M.p. 179.8 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.83 (s, 1 H, N*H*), 8.51 (d, $J_{HH} = 4.4$ Hz, 1 H, Ar*H*), 7.95 (br, 2 H, Ar*H*), 7.89 (d, $J_{HH} = 7.2$ Hz, 1 H, Ar*H*), 7.81 (d, $J_{HH} = 7.2$ Hz, 1 H, Ar*H*), 7.71 (t, $J_{HH} = 6.8$ Hz, 1 H, Ar*H*), 7.64 (d, $J_{HH} = 7.2$ Hz, 1 H, Ar*H*), 7.58 (t, $J_{HH} = 7.0$ Hz, 1 H, Ar*H*), 7.39–7.33 (m, 3 H, Ar*H*), 7.27–7.25 (m, 2 H, Ar*H*), 6.92 (s, 1 H, N*H*), 6.82 (t, $J_{HH} = 7.2$ Hz, 1 H, Ar*H*), 5.83 (br, 2 H, C*H*₂), 2.56 (s, 2 × 3 H, C*H*₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 163.0, 161.6 (q, ²*J*_{CF} = 32.7 Hz), 148.5, 147.7, 147.2, 139.5, 135.9, 134.1, 133.9, 133.7, 132.3, 131.0, 130.0 (q, ²*J*_{CF} = 30.4 Hz), 129.4, 128.8, 128.6, 127.8 (q, ³*J*_{CF} = 4.3 Hz), 125.6 (br), 124.3 (q, ³*J*_{CF} = 5.1 Hz), 124.0 (q, ¹*J*_{CF} = 274.3 Hz), 123.8, 123.2 (q, ¹*J*_{CF} = 272.9 Hz), 123.1, 121.4, 118.7, 116.1 (q, ²*J*_{CF} = 29.0 Hz), 60.7, 19.1. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ -61.16, -61.58, -75.18. Anal. Calcd for C₃₂H₂₄N₅F₉O₂Pd (MW = 787.983 g/mol): C, 48.78; H, 3.07; N, 8.89. Found: C, 48.84; H, 3.05; N, 9.20. IR (KBr, cm⁻¹): ν (NH) 3447 (w), ν (C≡N) 2188 (m), ν_a (OCO) 1680 (s); ν (C=N) 1604 (m); ν_s (OCO) 1455 (m). Λ_M (Ω^{-1} cm² mol⁻¹, MeCN) = 57.17 (10⁻³ M).

Complexes 15 A 25 mL RB was charged with 2,6-xylylisocyanide (20.0 mg, 0.152 mmol), **4** (78.7 mg, 0.152 mmol) or **5** (88.6 mg, 0.152 mmol) separately, the resulting mixture dissolved in CH₂Cl₂ (10 mL) and set to stir at RT for 24 h. The reaction mixture was filtered through a Whatman filter

paper, the filtrate layered with toluene and stored at RT for three weeks to afford **15** as dark red crystals suitable for SCXRD. Yields = 77% (68.8 mg, 0.118 mmol) from **4** and 81% (72.3 mg, 0.124 mmol) from **5**.

Alternate Method for 15

A 25 mL RB was charged with **4** (50.0 mg, 0.096 mmol) and 'BuOK (43.0 mg, 0.384 mmol) in CHCl₃ (10 mL) and the resulting mixture stirred at RT for 5 min. To this solution 2,6-xylylisocyanide (15.1 mg 0.115 mmol) was added and stirred for 24 h. During the course of the reaction, color of the solution changed from yellow to dark red indicating the formation of oxygenated product, **15**. The reaction mixture was filtered through a Whatman filter paper and the filtrate evaporated under vacuum to afford **15** in 82% (46.1 mg, 0.079 mmol) yield.

Data of 15 M.p. 226.4 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 10.69 (s, 1 H, N*H*), 8.54 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 8.45 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 8.31 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 8.04 (dt, *J*_{HH} = 7.6 Hz; 1.2 Hz, 1 H, Ar*H*), 7.53 (t, *J*_{HH} = 6.0 Hz, 1 H, Ar*H*), 7.42 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 7.35 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.24–7.16 (m, 4 H, Ar*H*), 6.98 (d, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 6.92 (t, *J*_{HH} = 7.2 Hz, 1 H, Ar*H*), 6.53 (t, *J*_{HH} = 7.4 Hz, 1 H, Ar*H*), 2.57 (s, 2 × 3 H, C*H*₃), 2.43, 2.38 (each s, 2 × 3 H, C*H*₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 172.6, 154.8, 148.3, 143.7, 141.4, 140.2, 140.1, 139.7, 135.9, 134.7, 133.2, 130.3, 129.8, 128.6, 128.5, 128.1, 127.8, 126.9, 125.8, 122.8, 121.5, 120.9, 21.9, 19.2, 18.9. Anal. Calcd for C₃₀H₂₇N₅OPd·¹/₄ H₂O (MW = 580.000 + 4.504 g/mol): C, 61.65; H, 4.74; N, 11.98. Found: C, 61.70; H, 4.72; N, 12.17. IR (KBr, cm⁻¹): v(NH) 3425 (w); v(C=N) 2160 (s); v(C=O) 1639 (s); v(C=N) 1530 (s).

Complexes 16 A 25 mL RB was charged with 2,6-xylylisocyanide (20.0 mg, 0.152 mmol) and **7** (91.6 mg, 0.152 mmol), the resulting mixture dissolved in CH₂Cl₂ (10 mL) and set to stir at RT

for 24 h. The reaction mixture was filtered through a Whatman filter paper, layered with toluene and stored at RT for three weeks to afford **16** as red crystals suitable for SCXRD.

Data of 16 Yield = 78% (81.6 mg, 0.119 mmol). M.p. 242.3 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 11.10 (s, 1 H, N*H*), 8.41 (d, *J*_{HH} = 4.4 Hz, 1 H, Ar*H*), 8.29 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 8.18 (d, *J*_{HH} = 8.4 Hz, 1 H, Ar*H*), 7.90 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.71 (d, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.56 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 7.49 (t, *J*_{HH} = 7.0 Hz, 2 H, Ar*H*), 7.39–7.35 (m, 2 H, Ar*H*), 7.24 (d, *J*_{HH} = 7.6 Hz, 2 H, Ar*H*), 7.10 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.62 (t, *J*_{HH} = 7.4 Hz, 1 H, Ar*H*), 2.57 (s, 2 × 3 H, C*H*₃). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –59.98, –61.34. Anal. Calcd for C₃₀H₂₁N₅F₆OPd (MW = 687.942 g/mol): C, 52.38; H, 3.08; N, 10.18. Found: C, 52.55; H, 3.23; N, 10.47. IR (KBr, cm⁻¹): v(NH) 3010 (br w), v(C=N) 2174 (m), v(C=O) 1643 (m), v(C=N) 1517 (s).

Complexes 17 A 25 mL RB was charged with 2,6-xylylisocyanide (20.0 mg, 0.152 mmol) and **8** (98.0 mg, 0.152 mmol), the resulting mixture dissolved in CH₂Cl₂ (10 mL) and set to stir at RT for 24 h. The reaction mixture was filtered through a Whatman filter paper, layered with toluene and stored at RT for three days to afford **17** as orange crystals suitable for SCXRD.

Data of 17: Yield = 76% (77.9 mg, 0.116 mmol). M.p. 198.5 °C (decomp.). ¹H NMR (CDCl₃, 400 MHz): δ 8.52 (d, *J*_{HH} = 5.6 Hz, 1 H, Ar*H*), 7.83 (t, *J*_{HH} = 8.4 Hz, 2 H, Ar*H*), 7.60 (d, *J*_{HH} = 7.6 Hz, 2 H, Ar*H*), 7.43 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.33 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 7.28–7.23 (m, 2 H, Ar*H*), 7.20 (d, *J*_{HH} = 7.6 Hz, 2 H, Ar*H*), 7.04 (d, *J*_{HH} = 8.0 Hz, 1 H, Ar*H*), 7.00 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 6.86 (br, 1 H, N*H*), 6.59 (t, *J*_{HH} = 7.6 Hz, 1 H, Ar*H*), 5.55 (s, 2 H, C*H*₂), 2.53 (s, 6 H, 2 × C*H*₃). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 165.9, 149.6 (br), 148.6, 147.2, 146.5, 138.3, 138.0, 135.7, 132.6, 130.3, 129.1, 128.6, 128.3, 127.6, 126.9, 126.7 (q, ³*J*_{CF} = 5.8 Hz), 126.3, 125.4, 124.9 (q, ²*J*_{CF} = 28.3 Hz), 124.8, 124.7 (each q, ¹*J*_{CF} = 273.6 Hz), 123.7 (q, ³*J*_{CF}

= 5.8 Hz), 122.7, 121.9, 121.0, 118.4, 113.8 (q, ${}^{2}J_{CF}$ = 29.0 Hz), 62.1, 19.1. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –61.47, –61.84. Anal. Calcd for C₃₀H₂₃N₅F₆Pd (MW = 673.959 g/mol): C, 53.46; H, 3.44; N, 10.39. Found: C, 53.19; H, 3.16; N, 10.63. IR (KBr, cm⁻¹): v(NH) 3425 (w); v(C=N) 2175 (m); v(C=N) 1523 (m).

General procedure for cycloisomerization of 4-pentynoic acid

In a 5 mm Wilmad NMR tube fitted with a w/J Young valve, 4-pentynoic acid (6 mg, 0.061 mmol) was dissolved in 0.6 mL CDCl₃. To this solution, 1 mol% catalyst solution of **3–8** prepared in CDCl₃ was added and the NMR tube was shaken briefly. The progress of the reaction involving 4-pentynoic acid (7.00 mg, 0.071 mmol) and **8** (0.46 mg, 1 mol%) in CDCl₃ was monitored by ¹H NMR spectroscopy at regular time interval. The signals of CH₂ protons of the product slowly emerged while corresponding signals of 4-pentynoic acid disappeared completely after 12 h.

	3.1/2 toluene	5.1/2 toluene.1/2 pivalic acid	6
Formula	$C_{26.5}H_{25}F_3N_4O_2Pd$	C32H38.5N4O3Pd	$C_{23}H_{15}F_9N_4O_2Pd$
Fw	594.90	633.57	656.79
Temperature (K)	293(2)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	$P2_{1}/c$	P21/c
<i>a</i> (Å)	11.2472(5)	11.8433(3)	13.8775(5)
<i>b</i> (Å)	11.6670(6)	18.0831(5)	22.4973(9)
<i>c</i> (Å)	20.8033(6)	29.6288(9)	16.1759(6)
α (deg)	99.053(3)	90	90
β (deg)	99.487(3)	90.847(2)	96.334(4)
$\gamma(\text{deg})$	97.943(4)	90	90
Volume (Å ³)	2620.9(2)	6344.7(3)	5019.4(3)
Ζ	4	8	8
$ ho_{ m calcd}~({ m Mg}/{ m m}^3)$	1.508	1.327	1.738
μ (Mo K α) (mm ⁻¹)	0.760	0.621	0.835
<i>F</i> (000)	1204.0	2628.0	2592.0
2θ range (deg)	7.088 to 52.742	6.828 to 49.998	6.806 to 52.744
No. of reflns collected	10696	81137	69215
No. of reflns used	10696	11155	12245
Parameters	657	673	758
$R_1 [I > 2\sigma(I)]^a$	0.0782	0.0555	0.0501
wR ₂ (all reflns) ^{b}	0.2199	0.1204	0.1126
GooF on F^{2c}	1.053	1.0318	1.036
Largest diff. peak and hole, $(e \cdot Å^{-3})$	1.91/-1.07	0.50/-0.48	0.56/-0.64

Table S1 Crystallographic data for $3 \cdot \frac{1}{2}$ toluene, $5 \cdot \frac{1}{2}$ toluene. $\frac{1}{2}$ pivalic acid and 6.

 ${}^{c}\mathbf{S} = \{\Sigma[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}]/(\mathbf{n}-\mathbf{p})\}^{1/2}$

Table S2Crystallographic data for 7, 10 and 14.					
	7	10	14		
Formula	$C_{46}H_{36}F_{12}N_8O_4Pd_2$	$C_{48}H_{44}F_3N_4O_2PPd$	C32H24F9N5O2Pd		
Fw	1205.63	903.24	787.96		
Temperature (K)	293(2)	293(2)	293(2)		
Wavelength (Å)	0.71073	0.71073	0.71073		
Crystal system	monoclinic	triclinic	monoclinic		
Space group	$P2_1/c$	P-1	$P2_1/c$		
<i>a</i> (Å)	14.2253(3)	10.8143(3)	8.2270(3)		
<i>b</i> (Å)	19.3693(3)	14.5146(3)	26.1341(7)		
<i>c</i> (Å)	17.4110(3)	14.5400(4)	15.2245(4)		
α (deg)	90	94.143(2)	90		
β (deg)	93.317(2)	109.681(2)	98.085(3)		
$\gamma(\text{deg})$	90	90.228(2)	90		
Volume (Å ³)	4789.29(15)	2142.36(10)	3240.81(17)		
Ζ	4	2	4		
$ ho_{ m calcd}~(Mg/m^3)$	1.672	1.400	1.615		
μ (Mo K α) (mm ⁻¹)	0.850	0.527	0.663		
<i>F</i> (000)	2400.0	928.0	1576.0		
2θ range (deg)	6.664 to 52.744	6.24 to 52.742	4.126 to 54.388		
No. of reflns collected	67124	31624	8299		
No. of reflns used	9772	8745	8299		
Parameters	651	476	473		
$R_1 [I > 2\sigma(I)]^a$	0.0492	0.0502	0.1133		
wR ₂ (all reflns) ^{b}	0.1146	0.1481	0.3366		
GooF on F^{2c}	1.022	1.067	1.369		
Largest diff. peak and hole, $(e \cdot Å^{-3})$	0.59/-0.82	0.73/-0.61	1.53/-0.95		

 ${}^{a}\mathbf{R}_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; {}^{b}\mathbf{w}\mathbf{R}_{2}$ ${}^{c}\mathbf{S} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(\mathbf{n} - \mathbf{p})\}^{1/2}$

	15	16	17 [.] toluene
Formula	C ₃₀ H ₂₇ N ₅ OPd	C ₃₀ H ₂₁ F ₆ N ₅ OPd	C33.5H27F6N5Pd
Fw	579.96	687.92	720.027
Temperature (K)	293(2)	204.15	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
<i>a</i> (Å)	7.3937(3)	8.4101(5)	8.7513(2)
<i>b</i> (Å)	13.2167(4)	11.9592(3)	12.4438(3)
<i>c</i> (Å)	13.2300(5)	14.4653(3)	14.6041(4)
α (deg)	89.666(3)	82.430(2)	92.799(2)
β (deg)	78.792(3)	74.423(4)	96.175(2)
$\gamma(\text{deg})$	87.117(3)	72.257(4)	100.159(2)
Volume (Å ³)	1266.57(8)	1332.82(10)	1552.62(7)
Ζ	2	2	2
$ ho_{ m calcd}~(Mg/m^3)$	1.521	1.714	1.540
μ (Mo K α) (mm ⁻¹)	0.766	0.774	0.666
<i>F</i> (000)	592.0	688.0	724.6
2θ range (deg)	5.616 to 52.742	6.594 to 52.744	6.3 to 52.74
No. of reflns collected	10384	16195	31500
No. of reflns used	10384	5443	6336
Parameters	339	390	434
$R_1 [I > 2\sigma(I)]^a$	0.0508	0.0417	0.0294
wR ₂ (all reflns) ^{b}	0.1589	0.0995	0.0744
GooF on F^{2c}	1.069	0.991	1.039
Largest diff. peak and hole, $(e \cdot A^{-3})$	0.69/-0.76	0.96/-0.81	0.41/-0.53

 Table S3 Crystallographic data for 15, 16 and 17 toluene.

^{*a*}R₁ = $\Sigma ||F_o|| - |F_c||/\Sigma |F_o|$; ^{*b*}wR₂ = { $\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]$ }^{1/2}; ^{*c*}S = { $\Sigma [w(F_o^2 - F_c^2)^2]/(n-p)$ }^{1/2} Table S4 List of electronic energies of G, H, H[•], H', I, TS, K and K' at the B3LYP/6-31G*/LANL2DZ level of theory and basis sets.

Systems	E (Hartree)	ZPE (Hartree)	Thermal correction to energy (Hartree)	Thermal correction to Gibbs free energy (Hartree)	Solvation (Toluene) kcal/mol	Total energy including solvent, ZPE and thermal Corrections (Hartree)
G	-1212.1564521	0.361729	0.386142	0.304495	-6.83	-1211.114967
Н	-1211.585352	0.346434	0.371052	0.287614	-27.03	-1210.623335
H•	-1211.549814	0.349679	0.37389	0.291716	-5.50	-1210.54329
Ι	-1361.902723	0.355147	0.381579	0.295761	-33.09	-1360.922961
TS	-1361.871823	0.34949	0.375878	0.289782	-32.369	-1360.908247
K	-1286.192894	0.343056	0.368031	0.285312	-8.04	-1285.209303
K'	-1286.194096	0.342997	0.36803	0.283201	-7.75	-1285.212211
Н'	-1211.585305	0.346289	0.370843	0.288111	-26.97	-1210.623049

Fig. S1 Molecular structures of $3 \cdot \frac{1}{2}$ toluene, $5 \cdot \frac{1}{2}$ toluene $\frac{1}{2}$ pivalic acid, 6 at the 50% probability level. Number of molecules in an asymmetric unit, Z' = 2. Only molecule 1 is shown for clarity. CF₃ unit of the carboxylate ligand revealed a rotational disorder.

Table S5 Selected bond parameters of 3, 6, III and IV around the CN3 core of
guanidines.

Bond	$3^{1/2}$ toluene	6	IV ^a	\mathbf{V}^{a}
C1–N1, Å	1.342(10) ^b	1.351(4) ^b	1.331(7) ^b	1.327(7)
	1.362(10) ^c	1.349(5) ^c	1.331(8) ^c	
C1–N2, Å	1.367(9) ^b	$1.354(4)^{b}$	1.342(8) ^b	1.334(7)
	1.373(9) ^c	1.356(5) ^c	1.347(8) ^c	
C1–N3, Å	1.304(10) ^b	$1.288(4)^{b}$	$1.340(8)^{b}$	1.357(7)
	1.291(10) ^c	$1.291(5)^{c}$	$1.334(8)^{c}$	

^a Ref. 20

^b molecule 1

^c molecule 2

Fig. S2 Two types of resonance assisted hydrogen bond present in IV and V.²⁰

Fig. S3 Molecular structure of **15** at the 50% probability level. Hydrogen bond parameters (Å and deg): $O1\cdots H2 = 1.861$; $O1\cdots N2 = 2.575$; $N2-H2\cdots O1 = 139.334$.

Fig. S4 Intermolecular hydrogen bond interactions in the crystal structure of 3.1/2 toluene. Hydrogen bond parameters (Å and deg): O2···H6A = 2.066; O2···N6 = 2.870; N6–H6A···O2 = 155.45; O2···H39B = 2.671; O2···C39 = 3.450; C39–H39B···O2 = 137.68; O4···H2 = 2.061; O4···N2 = 2.859; N2–H2···O4 = 153.95; O4···H16B = 2.677; O4···C16 = 3.516; C16–H36B···O4 = 145.09.

Fig. S5 Intermolecular hydrogen bond interactions in the crystal structure of $3 \cdot \frac{1}{2}$ toluene. Hydrogen bond parameters (Å and deg): $02 \cdots H6A = 2.060$; $02 \cdots N6 = 2.864$; N6–H6A····O2 = 155.18; $02 \cdots H39B = 2.672$; $02 \cdots C39 = 3.448$; C39–H39B····O2 = 137.35; $02 \cdots H36 = 2.787$; $02 \cdots C36 = 3.540$; C39–H39B····O2 = 142.35; C27····H10 = 2.745; C27···C10 = 3.662; C10–H10···C27 = 169.31; C28···H10 = 2.861; C28···C10 = 3.701; C10–H10···C28 = 150.91; H33···C4 = 2.726; H33···C5 = 2.766; C33–H33···C4 = 167.86; C33–H33···C5 = 148.02; O4····H16B = 3.575; O4···C16 = 3.518; C16–H36B···O4 = 144.82. In crystal structure of $3 \cdot \frac{1}{2}$ toluene, there are two molecules in an asymmetric unit arranged in a heat to tail fashion and linked with each other through N–H···O and C–H···O interactions, both interactions within the dimer and a C–H···O interaction with the adjacent dimer. Thus, the carbonyl O atom of trifluoroacetate acts as a trifurcated H bond acceptor. The head to tail dimer is also stabilized by a pair of C–H··· π interactions.

Fig. S6 Intermolecular hydrogen bond interactions in the crystal structure of **5**·½ toluene·½ pivalic acid. Hydrogen bond parameters (Å and deg): $O2\cdots H6A = 2.017$; $O2\cdots N6 = 2.780$; $N6-H6A\cdots O2 = 147.38$; $O2\cdots H42B = 2.568$; $O2\cdots C42 = 3.434$; $C42-H42B\cdots O2 = 148.77$; $O4\cdots H2 = 2.080$; $O4\cdots N2 = 2.864$; $N2-H2\cdots O4 = 151.17$; $O4\cdots H16B = 2.591$; $O4\cdots C16 = 3.427$; $C16-H36B\cdots O4 = 144.34$.

Fig. S7 Intermolecular hydrogen bond interactions in the crystal structure of **5**·½ toluene-½ pivalic acid. Hydrogen bond parameters (Å and deg): $O2\cdots H6A = 2.027$; $O2\cdots N6 = 2.782$; $N6-H6A\cdots O2 = 145.98$; $O2\cdots H42B = 2.564$; $O2\cdots C42 = 3.448$; $C42-H42B\cdots O2 = 148.63$; $O2\cdots H56 = 2.695$; $O2\cdots C56 = 3.367$; $C56-H56\cdots O2 = 129.81$; $O4\cdots H2 = 2.084$; $O4\cdots N2 = 2.867$; $N2-H2\cdots O4 = 150.89$; $O2\cdots H16B = 2.589$; $O2\cdots C16 = 3.423$; $C16-H16B\cdots O2 = 144.23$; $O3\cdots H20 = 2.578$; $O3\cdots C20 = 3.451$; $C20-H20\cdots O3 = 156.34$; $C32\cdots H45 = 3.104$; $C32\cdots C45 = 3.688$; $C45-H45\cdots C32 = 169.62$. The head to tail dimer (dimer 1) is interlinked through a pair of N-H \cdots O and C-H \cdots O interactions wherein the carbonyl O atom of the pivalate is acceptor bifurcating. In another head to tail dimer (dimer 2) the molecule involved are linked with each other through N-H \cdots O, C-H \cdots O and C-H \cdots O (toluene) interactions and the O atom of the pivalate is acceptor trifurcating. The dimer 1 and the dimer 2 are linked through one C-H \cdots O and C-H \cdots π interactions.

Fig. S8 Intermolecular hydrogen bond interactions in the crystal structure of **6**. Hydrogen bond parameters (Å and deg): O2···H6A = 2.084; O2···N6 = 2.860; N6–H6A···O2 = 149.87; O2···H39B = 2.437; O2···C39 = 3.316; C39–H39B···O2 = 150.60; O4···H2 = 2.099; O4···N2 = 2.902; N2–H2···O4 = 155.54; O4···H16B = 2.480; O4···C16 = 3.342; C16–H36B···O4 = 147.92.

Fig. S9 Intermolecular hydrogen bond interactions in the crystal structure of **6**. Hydrogen bond parameters (Å and deg): $O4\cdots H2 = 2.099$; $O4\cdots N2 = 2.904$; $N2-H2\cdots O4 = 155.54$; $O4\cdots H16B = 2.480$; $O4\cdots C16 = 3.342$; $C16-H16B\cdots O4 = 147.92$; $O4\cdots H12 = 2.675$; $O4\cdots C12 = 3.392$; $C12-H12\cdots O4 = 134.49$; $C25\cdots H10 = 2.733$; $C25\cdots C10 = 3.654$; $C10-H10\cdots C25 = 170.88$; $C30\cdots H10 = 2.776$; $C30\cdots C10 = 3.643$; $C10-H10\cdots C30 = 155.51$. The non-covalent interactions within and between the head to tail dimer in **6** are identical to those analogous interactions observed in the crystal structure of **3**.¹/₂ toluene.

Fig S10 Intermolecular hydrogen bond interactions in the crystal structure of **7**. Hydrogen bond parameters (Å and deg): $O4\cdots H12 = 2.557$; $O4\cdots C12 = 3.412$; $C12-H12\cdots O4 = 152.92$; $O2\cdots H39A = 2.700$; $O2\cdots C39 = 3.575$; $C39-H39A\cdots O2 = 150.23$. The dimer 1 illustrated in Fig. S9 is linked to two adjacent dimers (dimers 2 and 3) in two different ways. The dimer 1 is linked to the dimer 2 by a pair of intermolecular C-H…O interactions while dimers 1 and 3 are linked through a pair of C-H…O interactions involving CH₂ protons and carbonyl O atom of the acetate ligand.

Fig. S11 Intermolecular hydrogen bond interactions in the crystal structure of **16**. Hydrogen bond parameters (Å and deg): $O1\cdots H2 = 1.785$; $O1\cdots N2 = 2.515$; $N2-H2\cdots O1 = 141.55$; $O1\cdots H29A = 2.563$; $O1\cdots C29 = 3.393$; $C29-H29A\cdots O1 = 144.90$; $C5\cdots H29B = 2.775$; $C5\cdots C29B = 3.668$; $C29-H29B\cdots C5 = 154.98$. In crystal structure of **16**, the head to tail dimer is linked through a pair of intramolecular N-H···O and intermolecular C-H···O interactions. This dimer is linked to adjacent identical dimer through two pairs of C-H··· π interaction.

¹H NMR (CDCl₃, 400 MHz) spectrum of 3.1/2 toluene. The \star symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of $3.\frac{1}{2}$ toluene in indicated region.

 19 F{ 1 H} NMR (CDCl₃, 376.5 MHz) spectrum of 3.1/2 toluene.

¹H NMR (CDCl₃, 400 MHz) spectrum of 4.1/4 toluene.

¹H NMR (CDCl₃, 400 MHz) spectrum of **4**.¹/₄ toluene in indicated region.

 1 H NMR (CDCl₃, 400 MHz) spectrum of **4**·1/4 toluene in indicated region.

 1 H NMR (CDCl₃, 400 MHz) spectrum of **4**·1/4 toluene in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of 5.¹/₂ toluene.¹/₂ pivalic acid in indicated region.

 ^1H NMR (CDCl₃, 400 MHz) spectrum of $5\cdot\!\!\!/_2$ toluene $\cdot\!\!\!/_2$ pivalic acid in indicated region.

 ^1H NMR (CDCl₃, 400 MHz) spectrum of $5\cdot\!\!\!/_2$ toluene $\cdot\!\!\!/_2$ pivalic acid in indicated region.

 $^{13}C{^{1}H}$ NMR (CDCl₃, 100.5 MHz) spectrum of 5.1/2 toluene.1/2 pivalic acid in indicated region.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of **5**·½ toluene·½ pivalic acid in indicated region.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of **5**·½ toluene·½ pivalic acid in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of $6. \star$ symbol indicate protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of **6** in indicated region.

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 376.5 MHz) spectrum of **6**.

¹H NMR (CDCl₃, 400 MHz) spectrum of 7 + 9. The \star symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of 7 + 9 in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of 7 + 9 in indicated region.

 19 F{ 1 H} NMR (CDCl₃, 376.5 MHz) spectrum of **7** + **9**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **7**. The ***** symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of **7** in indicated region.

¹⁹F{¹H} NMR (CDCl₃, 376.5 MHz) spectrum of **7**.

¹H NMR (CDCl₃, 400 MHz) spectrum of 8. The \star symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of **8** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **8**.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of **8** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **8** in indicated region.

 $^{13}\text{C}\{^1\text{H}\}$ NMR (CDCl₃, 100.5 MHz) spectrum of **8** in indicated region.

¹³F{¹H} NMR (CDCl₃, 376.5 MHz) spectrum of **8**.

 1 H NMR (CDCl₃, 400 MHz) spectrum of **10**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **10** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **10** in indicated region. The \star symbol indicates protons of residual water.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **10**.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **10** in indicated region.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of 10 in indicated region.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of 10 in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **10**.

 $^{31}P\{^{1}H\}$ NMR (CDCl₃, 161.8 MHz) spectrum of **10**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **11**. The **★** symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of **11** in indicated region.

 ^1H NMR (CDCl₃, 400 MHz) spectrum of 11 in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **11**.

³¹P{¹H} NMR (CDCl₃, 161.8 MHz) spectrum of **11**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **12** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **12** in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **12** in indicated region.

³¹P{¹H} NMR (CDCl₃, 161.8 MHz) spectrum of **12**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **13**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **13** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **13** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **13**.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of **13** in indicated region.

 $^{13}C\{^1H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of 13 in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **13** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **14**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **14** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **14.**

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **14** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **14** in indicated region.

 $^{13}C\{^1H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of 14 in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **14**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **15**. The \bigstar symbol indicates protons of residual water.

 ^1H NMR (CDCl₃, 400 MHz) spectrum of 15 in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **15**.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **15** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **15** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **16**. The \star symbol indicates protons of residual water.

¹H NMR (CDCl₃, 400 MHz) spectrum of **16** in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **16**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **17**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **17** in indicated region.

¹H NMR (CDCl₃, 400 MHz) spectrum of **17** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **17**.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **17** in indicated region.

¹³C{¹H} NMR (CDCl₃, 100.5 MHz) spectrum of **17** in indicated region.

 $^{13}C\{^1H\}$ NMR (CDCl₃, 100.5 MHz) spectrum of 17 in indicated region.

¹⁹F NMR (CDCl₃, 376.5 MHz) spectrum of **17**.

¹H NMR ((CD₃)₂CO, 400 MHz) spectrum of **8**.

 ^1H NMR ((CD₃)₂CO, 400 MHz) spectrum of **8** in indicated region.

¹⁹F NMR ((CD₃)₂CO, 376.5 MHz) spectrum of **8**.

¹H NMR (CD₃OD, 400 MHz) spectrum of $\mathbf{8}$.

¹H NMR (CD₃OD, 400 MHz) spectrum of **8** in indicated region.

¹⁹F NMR (CD₃OD, 376.5 MHz) spectrum of **8**.

¹H NMR (CD₃CN, 400 MHz) spectrum of **8**.

¹H NMR (CD₃CN, 400 MHz) spectrum of **8** in indicated region.

¹⁹F NMR (CD₃CN, 376.5 MHz) spectrum of **8**.

¹H NMR (CDCl₃, 400 MHz) optimization of time for cycloisomerization reaction of 4-pentynoic acid catalyzed by **8**.

ESI-MS data of 3.

ESI-MS data of 4.

ESI-MS data of 5.

ESI-MS data of 6.

ESI-MS data of **7** + **9**.

ESI-MS data of 8.

20-05-2019 varioELcube serial number: 19171021

Text report

No	Weight Img	Name	Method	N MR	C (%)	HPQ	5 194	N Ama	C Ama	H Area	\$ Area	C/N ratio	C/H ratio	N Factor	C Factor	H Factor	S Fartor	N Blank	CBla	H Blank	S Bank	Molsture (%)	Prot fiscor	Prot [94]	Merno	Date Time
13	5.0960	suffanitamide	5mg90s	16.26	41.85	4 680	18.620	31 586	55 A38	19 915	601 469	25738	89423	10760	10826	1 1455	1.0560	0	1	0	0	0.00	0.0000	0.000		20/05/2019 18:04
14	5.0560	sufferilarride	Smg90s	16.26	41.85	4 680	18.620	36 241	64 087	22 858	694 479	25738	89423	10770	1.0820	1 1561	10555	0		0	0	0.00	0.0000	0.000		20/05/2019 1817
22	5,2300	NKS 35	Smg90s	5.83	37.68	2 630	4.609	11 638	\$1 982	10 816	145 781	65024	14 4004	10754	10811	1,2018	10583	0		0 0	0	0.00	0.0000	0.000		20/05/2019 19:49
23	3.5680	NKS-36	Smg90s	12.29	66 27	4.024	0142	16 844	62 261	17 403	2 764	5 3919	16 4679	10754	10811	1 2018	1.0583	0		0 0	0	0.00	0.0000	0 000		20/05/2019 20:00
24	7.3680	NKS 36A	Smg90s	12 17	66.31	3 979	0143	34 278	127 158	23 625	5 736	5 4488	16 6662	10754	10811	1 2018	10583	0	1	0 0	0	000	0.0000	0 000		20/05/2019 2012
25	1.9150	NIS-216	Smg90s	10 19	50 18	3 705	0.091	15 241	51 550	11 461	1 933	49233	13 5419	10754	10811	1,2018	10583	0		0 0	0	0.00	0.0000	0000		20/05/2019 20:23
26	4.8560	NKS-216A	5mg90s	1014	50 19	3 690	0071	18 811	63 791	13 886	1 869	49476	13 6021	10754	10811	1 2018	10583	0		0 0	0	0.00	0 00000	0.000		20,05/2019 20:34
27	5,2990	VT-491	Smg90s	6.21	42.45	2.981	0219	12 565	59 314	12 087	6 289	6.8389	142412	10754	10742	1 2018	10583	0		0 0	0	000	0.0000	0.000		20/05/2019 20:45
28	3,4840	NIS 179	Smg90s	16.35	73 20	5 631	0171	21 744	66 715	15 329	3 229	44781	13 0005	1.0754	10811	1 2016	1.0583	0		0 0	0	0.00	0.0000	0.000		20/05/2019 20:56

CHNS data of **3**.

Document: 30-04-2019 (VarioELcube) from: I

28-06-2019 varioELcube serial number: 19171021

Text report

No.	Weight [mg] Name	Method	N [%]	C [%]	H [%]	5 [%]	N Area	C Area	H Area	S Area	C/N ratio	CAL ratio	Date Time
11	5.3800 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	33 363	58 417	18 516	628 889	2 5738	89423	29/04/2019 18:27
16	6.4080 NKS215	5mg90s	11.09	57.06	5.012	0.158	29 695	89 984	22 387	5 4 2 6	5.1435	11.3850	29/04/2019 19:25

	Cale Sate)	Calibrated . 5 tol.	observed
С	55-82	57.4	57.06
-+	4 Bg	5.06	5.01
Ν	11.32	10-82	11.09

CHNS data of 4.

Document: nks-17/9/19 (VarioELcube) from: I

28-06-2019 varioELcube serial number: 19171021

Text report

No	Weight (mg) Name	Method	N [%]	C [%]	н [%]	5 [%]	N Area	C Area	H Area	S Area	C/N ratic	C/H ratio	N Factor	C Factor	H Factor	S Factor	N Blank	С Ва.	H Blank	S Blank	Moisture [%]	Prot. Factor	Prot. [%] Memo	Date Time
13	5.7570 sulfanilamide	Smg90s	16.26	41.85	4.580	18.620	35.020	61 467	20 764	655 780	2.5738	8,9423	1.0959	1.1097	1,2443	1.0970	0	0	0	0	0.00	0.0000	0.000	17/09/2019 13:33
54	8.0650 suffanilamide	5mg90s	16.26	41.85	4,680	18.620	48 891	85 914	28 478	928 882	2.5738	8.9423	1.0978	1.1089	1,2919	1.0982	0	0	0	0	0.00	0.0000	0.000	17/09/2019 13:47
63	4.6030 NKS 285A	5mg90s	9.77	61.23	5.557	0.043	16 835	71 681	19 449	1 025	6.2682	11.0180	1.0970	1.1108	1,2562	1.0933	0	0	0	0	0.00	0.0000	0.000	17/09/2019 19:08
44	4 7980 NRS 2858	Smg90s	9.73	61.12	5.574	0.031	17 481	74 535	20 395	172	6.2805	10.9636	1.0970	1,1108	1,2562	1.0933	0	0	Ó	0	0.00	0.0000	0.000	17/09/2019 19:19

`н 🗸
M.P. 260°C
IR V
CHNS V
SCXRD V
HRMS
Yield .

	Calculated	Calculated. 1/2+al.	NKS-285A	NKS-285B
С	58-16	60.77	61.23	61.12
14	5.63	5-88	5.557	5 574
N	10-43	9.61	9.77	9.73

CHNS data of **5**.

28-06-2019 varioELcube serial number: 19171021

Text report

No Weight Img Name	Method	NERSE	H [%] S [%]	N Area C	Acea H Area	5 Area	C/N ratio	C/H ratio	N Factor	C Factor	H Factor	S Factor	N Blank	8a. H	Bark	S Blank	Moisture [%]	Prot. Factor	Prot. (%) Memo	Date Time
37 45610 NKS 2938 38 45270 NKS 2204	5mg90s	546 4404 876 4233	2485 0.060 2.007 0.090	16 149	51 302 8 490 49 411 6 707	1 432	46550	17.7231	1.0976	1,1108	1,2390	1 0906	0	0	0	0	0.00	0.0000	0.000	26/08/2019 19:10
C ₂₃ H	NKE His Fo N	5-293 ¹ 403 P =F3	S											KS- H,5	220 Fg	0 Ny (02 Ad			
F3C-	A A A	HQ-00	C(0)M	<u>e</u>								E	HN ZH		< PS	~~~~	00(0) D	Cf3		
Calcul	Dated	oben	rvel									Calci	lated)		06	served	Q		
C 14.	+9		9.09							C	•0	42	-06			ι	12-3	3		
4 2.	61	2	. 405							14		2	30				2.00	7		
N 9.	80		0.46							N		8	• 53				8-76	,		

CHNS data of 6.

28-06-2019
varioELcube
serial number: 19171021

No	Weght (mg) Name	Method	N 1961	C 1941	H (92	C (90)																		
.7	9.9546 suffanlamide	Smo90s	16.36	41.85	4690	0 [10]	in rees	C Avea	H Area	S Area	C/N ratio	C/H ratio	11 Factor	C Factor	H Factor	S Factor	ti Blank C i	Sia	H Blank	S Blank	Moliture [95]	Prot. Factor	Prot. [St] Memo	Date Tene
41	4.8830 NKS-2304	Smalle	0.54	4105	4 000	18.620	62 740	107 196	34 664	1 179 221	2.5738	8 9423	10540	1.0932	13206	10812	0	0;	0	0.	000	0.0000	0000	22/10/2020 17 10
	22020 4147 2444	any as	9.04	45.88	2627	0.056	18 350	58 064	9 057	1 453	47576	17.4648	10540	10932	1 3206	10612	0	6	6		0.00	0.0000	2022	601 (10 app 71 75
96	\$2670 NKS-2308	5mg/90%	994	45.84	2.387	0.068	12 662	38.970	5 333	1 171	46097	19 2045	10540	10002	1 3306	10013		1				0,000	0,000	23/10/2020 23 22
- 60	3.8460 CH3CN	Smg90s	11.90	45.79	2,294	0.050	17 824	45 758	6.076	1.033	1.8405			10000	1.96.00	1.0015		9	0	3	0.90	0 0000	0.000	23/10/2020 23 33
									0070	1023	210490	18 3051	1.0540	1.0932	1.3206	10872	0	0	: 0	-91	0.56	0.0000	0000	24/10/2010/02/2010

	Calculated	Observed	observed
\subset	45.83	45.88	45.84
14	3.01	2.63	2.39
Ν	9.29	9.64	9.94

CHNS data of 7.

28-06-2019 varioELcube serial number: 19171021

Text report

Na	Weight (mg) Name	Method	N	C [%]	H (%)	SPA	N Area	C Area	H Area	S Area	C/Ni ratio	CAL estin	N Faster	e com										
13	4 0650 sultanitamide	5mg90s	16.26	41.85	4 660	18620	35 635	43 743	11000		Gra rance	Gin raile	in racior	C ractor	H Factor	5 factor	N Blank	C Ba_	H Blank	S Blank	Moisture [%]	Prot. Factor	Prot. [%] Memo	Date Time
14	EREAD a Manhamida					10.02.0	23 080	43 /43	14 501	4/2 291	2.5738	8.9423	1.0902	1.1114	1,2334	1.0715	0	0	0	0	0.00	0.0000	0.000	26/08/2019 14:37
14	0.0340 sussemble	singeos	16.26	41.85	4.680	18.620	41 496	72 970	24 500	788 107	2.5738	8.9423	1.1002	1.1102	1,2671	1.0931	0	0			0.00	0.0000	0.000	
22	6.5530 NKS 288A	5mg90s	867	48.90	3.873	0.127	21 287	81 223	19 543	4 107	6 6 2 0 6	125254	1.00/0								0.00	01000	0.000	26/08/2019 14:51
23	5 5940 NKS-288R	Lance Ch.	6.72	40.77	2002	0.100	10 500		10.010	4 337	3.0290	16.0624	1.0960	1.1125	1,2408	1.0665	0	0	0	0	0.00	0.0000	0.000	26/08/2019 16:20
		14140.05	0.13	40.12	3.605	0.98	18 305	69 248	15 249	4 951	5.5790	13.5211	1,0960	1.1125	1,2408	1.0865	0	0	0	0	0.00	0.0000	0.000	25/08/2019 16:32

CHNS data of 8.

report	Text
--------	------

No.	Weight [mg] Name	Method	N [%]	C [%]	H [%]	5 [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio I	Info	Date Time
8	8.0050 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	53 279	87 133	28 870	915 112	2.5738	8.9423		08/04/2021 13:49
9	7.2900 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	48 041	79 464	26 465	838 469	2.5738	8.9423		08/04/2021 14:04
10	7.8600 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	51 313	85 593	28 666	918 979	2.5738	8.9423		08/04/2021 14:18
11	6.4260 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	42 149	70 281	23 103	752 814	2.5738	8.9423		08/04/2021 14:32
14	5.3520 NKS-216P	5mg90s	6.88	60.72	4.392	0.225	14 963	84 679	17 763	6 328	8.8252	13.8257 5	Su	08/04/2021 15:06

CHNS data of 10.

-			
lext	rep	port	

No.	Weight [mg] Name	Method	N [%]	C [%]	H [%]	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio	Info	Date	Time
11	5.4490 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	37 088	58 602	19 456	569 388	2.5738	8.9423		21/08/2	021 17:55
14	5.0130 NKS-220P	5mg90s	6.19	53.81	3.047	0.285	16 764	66 733	12 244	6 824	8.6983	17.6622 5	Su	21/08/2	021 18:28

.

	Calculated	observed
C	53-58	53 81
(4	3 29	3.05
М	6.10	6 19

CHNS data of 11.

Text	repo	rt

No.	Weight [mg] Name	Method	N [%]	C [%]	н [%]	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio	Info	Date Time
11	5.4490 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	37 088	58 602	19 456	569 388	2.5738	8.9423		21/08/2021 17:55
12	4.9640 NKS-216(2,6	5mg90s	10.37	56.76	4.510	0.443	23 226	74 142	18 563	10 485	5.4740	12.5848	Su	21/08/2021 18:06

CHNS data of 13.

No	Weight [mg] Name	Method	N [%]	C [%]	н (%)	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio	Info	Date Time
11	5,4490 sulfanilamide	5mg90s	16.26	41.85	4.680	18.620	37 088	58 602	19 456	569 388	2.5738	8.9423		21/08/2021 17:55
13	5.0890 nks-220(2,6)	5mg90s	9.20	48.84	3.052	0.285	21 137	66 121	12 472	6 924	5.3066	16.0039	Su	21/08/2021 18:17

	Calculated	observed
6	48.78	48.84
14	3.07	3.05
N	8-89	9.20

CHNS data of 14.

No.	Weight [mg] Name	Method	N [%]	C [%]	Н (%)	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio Info	Date Time
10	7.8600 sulfanilamic	le 5mg90s	16.26	41.85	4.680	18.620	51 313	85 593	28 666	918 979	2.5738	8.9423	08/04/2021 14:18
11	6.4260 sulfanilamic	le 5mg90s	16.26	41.85	4.680	18.620	42 149	70 281	23 103	752 814	2.5738	8.9423	08/04/2021 14:32
12	5.3990 NKS-209(2,	6) 5mg90s	12.17	61.70	4.725	0.432	26 665	86 769	19 389	12 261	5.0715	13.0599 Su	08/04/2021 14:44

	Calulated	Obscared	Calculated 25+20
\subset	62.3	61.70	61.65
н	4.69	4.72	4.74
N	12.08	12.17	11.38

CHNS data of 15.

No.	Weight [mg] Na	ame	Method	N [%]	C [%]	H [%]	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio Info	Date Time
11	7.3980 sult	fanilamide	5mg90s	16.26	41.85	4.680	18.620	47 619	80 378	27 352	850 139	2.5738	8.9423	28/06/2021 18:58
12	7.3600 sult	lfanilamide	5mg90s	16.26	41.85	4.680	18.620	47 370	79 780	27 092	849 730	2.5738	8.9423	28/06/2021 19:12
18	6.2610 NK	(\$-279 (2,6)	5mg90s	10.47	52.55	3.232	0.081	25 958	85 284	15 226	2 631	5.0170	16.2589 Su	28/06/2021 20:18

CHNS data of 16.

Document: 21-08-2021 nks (VarioELcube) from: I

28-06-2019 varioELcube serial number: 19171021

Text report

No	Weight (mg) Name	Method	N [%]	C [%]	H [%]	S [%]	N Area	C Area	H Area	S Area	C/N ratio	C/H ratio Info	Date Time
11	5.4490 sulfanilamide	5ma90s	16.26	41.85	4.680	18.620	37 088	58 602	19 456	569 388	2.5738	8.9423	21/08/2021 17:55
18	1.6160 NKS-288(2.6)	5mg90s	10.63	53.19	3.163	0.726	9 943	19 614	3 241	5 591	5.0029	16.8160 Su	21/08/2021 19:15

CHNS data of 17.

References

- D. P. Bancroft, F. A. Cotton, L. R. Falvello and W. Schwotzer, *Polyhedron* 1988, 7, 615–621.
- 2. H. Parihar and N. Thirupathi, Org. Lett., 2022, 24, 8098–8103.
- ENHANCE, Oxford Xcalibur Single Crystal Diffractometer, version 1.171.34.49; Oxford Diffraction Ltd: Oxford, U.K., 2006.
- 4. CrysAlisPro, version 1.171.34.49; Oxford Diffraction Ltd: Oxford, U.K., 2011.
- 5. G. M. Sheldrick, University of Gottingen, Gottingen, Germany, 2017.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.
- Diamond-Crystal and Molecular Structure Visualization Crystal Impact-Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany. <u>http://www.crystalimpact.com/diamond.</u>
- 8. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 9. A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.
- 10. A. D Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 11. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys. 1980, 72, 650–654.
- T. H. Dunning Jr., P. J. Hay, In: H.F. Schaefer III. (Ed.), Modern Theoretical Chemistry, Plenum, New York, 1976.
- 13. P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 14. P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985, 82, 284–298.
- 15. P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985, 82, 299-310.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.R. Cheeseman, J. A. Montgomery Jr., T.Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian09, rev. A.02, Gaussian, Inc., Wallingford CT, 2009.
- 17. E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys. 1997, 107, 3032–3041.
- 18. M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett. 1998, 286, 253-260.
- 19. B. Mennucci and J. Tomasi, Chem. Phys. 1997, 106, 5151-5158.
- 20. N. K. Sinha and N. Thirupathi, Organometallics, 2021, 40, 3535–3549.