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1. Materials and methods 

1.1 Materials 

Chloroplatinic Acid (H2Cl6Pt), Ferrous chloride (FeCl2), Cupric acetate 

(Cu(CH3COO)2·H2O), sodium metasilicate (Na2SiO3·9H2O), potassium hydroxide 

(KOH), Ethylenediaminetetraacetic acid (EDTA)， Potassium fluoride (KF)， PdCl2, 

(CH3COO)2Pb, C6H9BiO6, (CH3COO)2Mn, 2-hexadecanediol (HDD), 

Hexadecylamine (HDA), Oleylamine (OAm) and Oleic Acid (OA) were purchased 

from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further 

purification. 4-Nitrophenol (4-NP) and sodium borohydride (NaBH4) were obtained 

from Aladdin and were used as received. Magnesium bulks (99.95%) were purchased 

from Boyu Nonferrous Metal Furnace Charge Co., Ltd (China). The bulks were cut 

into thin plates (40 mm * 20 mm *2 mm) by wire electrical discharge machining. 

Prior to anodizing, the samples were polished mechanically and then rinsed with 

alcohol. 

1.2 Preparation of the integral catalyst 

Prior to the experiment, a magnesium plate (40 mm * 20 mm *2 mm) and a stainless 

steel plate (100 mm * 60 mm * 2 mm) were selected as the anode and cathode. Before 

the PEO treatment, the magnesium plate was ground successively with 600, 2000 grit 

silicon carbide papers in water and alcohol, and then cleaned with distilled water and 
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dried by air flow. Immersion of a magnesium plate and a stainless steel plate in an 

electrolyte solution (4 g Na2SiO3·9H2O, 3.5 g KOH, 2.5 g KF and 0.05 mmol H2Cl6Pt, 

0.05 mmol FeCl2, 0.02 mmol Cu(CH3COO)2·H2O and 0.2 mmol EDTA in 500 mL 

water). EDTA not only prevents the precipitation of undesirable but also can combines 

with Fe
2+

 and Cu
2+

 ions to form negatively charged complexes which subsequently 

move towards the MgO anode via diffusion and electromigration. Then turn on 

micro-arc oxidation mode (frequency f = 500 Hz, duty cycle d = 35%) at 400 V and 

15 s. Finally, the sample was rinsed three times with water and vacuum-treated at 25℃ 

for 30 min. The catalysts with different components were prepared through the similar 

method, except for changing the metal salts(PdCl2, (CH3COO)2Pb, C6H9BiO6 and 

(CH3COO)2Mn). 

1.3 Preparation of the L10 FePtCu NPs 

0.25 mmol Pt(acac)2, 0.25 mmol FeCl2, 0.75 mmol 1, 2-hexadecanediol (HDD), and a 

certain amount of Cu(CH3COO)2·H2O were dissolved in 10 mL Hexadecylamine 

(HDA) in a three-necked flask under argon. The solution was heated to 120 ℃ for 30 

min to remove the moisture. 1 mL Oleylamine (OAm) and 1 mL Oleic Acid (OA) 

were injected into the solution, and then the solution was heated to 360 ℃ at the rate 

of 5℃/min. After refluxing for 180 min, the solution was cooled to room temperature. 

The intermediate product was collected by centrifugation with hexanes and ethanol. 

1.4 Characterization.  

X-ray diffraction (XRD) was measured using Cu Kα (λ= 0.15432 nm) as the 

X-ray source to study the phase structure of SmartLab,Rigaku. The samples were 

characterized by high-resolution high-angle annular darkled scanning transmission 

electron microscopy (HAADF-TEM) using a JEM-2100F microscope and by 

scanning electron microscopy (SEM) using a Jeol JSM-6500F microscope equipped 

with an energy-dispersive X-ray (EDX) spectrometer at a voltage of 15 kV. The 

compositions and loadings of catalysts were analyzed by an inductively coupled 

plasma-atomic emission spectrometer (ICP-AES). The Mott-Schottky (M-S) analysis 

and the electrochemical impedance spectroscopy (EIS) measurements were carried 

out using a three-electrode system with an electrochemical workstation (Zahner iM6e) 

in the same electrolyte solution as synthetic electrolyte. Hg/HgO electrode was used 



as the reference electrode and a graphite rod was used as the counter electrode. The 

EIS measurements were carried out at a potential of open potential with frequencies 

of 0.1 Hz to 100000 Hz and an amplitude of 5 mV. The carrier concentration (Nq) can 

be calculated according to the following formula: 

Nq = 2/(Slop·ε·ε0·e) 

Where ε is the dielectric constant of the PEO coating (10 for MgO), ε0 is the vacuum 

permittivity (8.85·10
-14

 F cm
-1

), e is the elementary charge (1.602·10
-19

 C), Slop is 

calculated from the linear region of the Mott-Schottky plot. The equivalent circuit 

model of Rs (CPE1Rct) was used to fit the EIS curves, where Rs and Rct represent 

solution resistance and charge transfer resistance.  

1.5 Catalytic performances characterization. 

The typical reaction process was as follows: 10 mL solution of 4-nitrophenol (10
-4

 M) 

was mixed with 10 mL solution of NaBH4 (0.1 M) ina beaker under magnetic stirring 

(1500 r min
-1

) at room temperature. During the process of catalytic reaction, 2.5 mL 

of the solution was withdrawn from the reaction medium every 10 minutes and 

dispersed back immediately after measurement. UV-vis spectrophotometer (Lambda 

750 S UV/VIS, PerkinElmer) are used to assess concentration. Since NaBH4 can be 

used in large quantities in excess, which concentration can be constant for the reaction 

time to follow a pseudo-first-order kinetics. The turnover frequency (TOF) is 

calculated to evaluate the efficiency of L10 FePtCu/MgO using the equation of mol4−

NP/molPt t (t is time). The TOF value was calculated based on the per Pt atom exposed 

to the surface of nanoparticles using the equation of surface Pt(%)=1.107 ×1.5
-0.523

 

D-0.187 (D is nanoparticle diameter in nm). 

The kinetic equation is applied to evaluate the highest apparent constant (k) for 

various catalysts.  

ln(Ct/C0) = − k t 

where Ct is the 4–NP concentration at definite reaction time (t), while C0 is the 

initial 4–NP concentration. Then, the apparent activation energy (Ea) was expressed 

by the Arrhenius equation as follows to obtain insight into the effects of Cu doping: 

ln k = ln A - Ea/RT 

where A represents the Arrhenius factor, R is the universal gas constant and T is the 



corresponding reaction temperature. The activity factor (K = k/m, where m is the total 

mass of catalyst participated in the reaction). 

 

Fig. S1 The image of the sample from left to right is the Mg substrate, before and after reduction 

under H2/Ar. 

 

Fig. S2 The XRD spectra of MgO and L10 FePtCu/MgO. 



 

Fig. S3 (a) SEM image of the top surface morphology of the L10 FePtCu/MgO catalyst film, 

the inset is the size distribution; (b) Cross-section SEM image; 

 (c) SEM-Mapping image of the cross-section. 

 

 

Fig. S4 The SEM image of different time (a) 5 s; (b) 10 s; (c) 20 s; (d) 30 s. 



 
 

Fig. S5 The size distribution of (a) 5 s; (b) 10 s; (c) 20 s; (d) 30 s. 

 

Fig. S6 The SEM image of different voltages (a) 320 V; (b) 360 V; (c) 440 V. 

 

Fig. S7 The size distribution of (a) 320 V; (b) 360 V; (c) 440 V. 



 

Fig. S8 (a) HAADF-STEM image of L10 FePtCu/MgO; (b) HRTEM image of L10 FePtCu/MgO. 

 

 

Fig. S9 (a) HAADF-STEM image of FePt/MgO; (b) STEM-Mapping of FePt/MgO. 



 

Fig.S10 Equilibrium phase diagram of FePt alloys. 

 

 
Fig. S11 UV-Vis absorption spectra of the catalytic solution without catalyst. 

 



 

Fig. S12 UV-Vis absorption spectra of the catalytic solution of Fe/MgO. 

 

 

Fig. S13 UV-Vis absorption spectra of the catalytic solution of FePt/MgO. 



 

Fig. S14 UV-Vis absorption spectra of the catalytic solution of Pt/MgO. 

 

Fig. S15 (a) Plot of C0/Ct vs. metal ratio of FePt for the catalytic reaction; (b) Plot of ln(C0/Ct) vs. 

metal ratio of FePt for the catalytic reaction. 

 



 

Fig. S16 Plot of ln(Ct/C0) vs. reaction time for the catalytic reaction 

carried out at different temperatures of (a)L10 FePtCu/MgO and (b) FePt/MgO . 

 

Fig. S17 UV-Vis absorption spectra of the catalytic solution of p-NBA hydrogenated. 

 



 
Fig. S18 (a) The XRD spectra of L10 FePtCu NPs; (b) TEM image of L10 FePtCu NPs; (c) Plot of 

C0/Ct vs. reaction time for the catalytic reaction; (d) Plot of conversion vs. cycle numbers of L10 

FePtCu NPs. 

 

Fig. S19 (a) TEM image of L10 FePtCu/MgO after reaction; (b)HAADF-STEM image of L10 

FePtCu/MgO after annealed at 800°C for 2h, the inset is the size distribution. 

 

Table S1. SEM-EDS results of L10 FePtCu/MgO 

 

Element Atomic% 

Mg 34.73 

O 59.09 

Si 6.17 

 



Table S2. The content of each element of L10 FePtCu/MgO. 

 

Elements Atom% 

Fe 
48.49 

Pt 
48.96 

Cu 
2.55 

 

Table S3. Comparison of the activity factors of L10 FePtCu/MgO with other 

catalysts reported in the literatures for the reduction of 4-NP to 4-AP. 

 

Ref. Catalysts 
Activity factor 

(K/min
-1·g

-1
) 

This work L10 FePtCu/MgO  6789.3 

1 
Au-loaded Na2Ta2O 1145.0 

2 
Au- Fe3O4 1656 

3 
5Ag/ BiVO4 3933.4 

4 
%20 BS /NCO  793 

5 
Au/graphene hydrogel  1902 

6 
Porous Cu-Au structures 1638 

7 
Cu-CuO-Ni nanocrystals 528 

8 
HKUST

-1
 

[Cu3(BTC)2(H2O)3]n·nH2OMeOH 

3731.4 

Table S4. Comparison of the TOF of L10 FePtCu/MgO with other 

catalysts reported in the literatures for the reduction of 4-NP to 4-AP. 

 

Ref. Catalysts TOF(min
-1

) 

This work L10 FePtCu/MgO  1060.8 

9 
Ag/MX/PAM 25.17 



10 
PNE/MXene/Cu NP 0.27 

11 
Pd3Cu1 79 wt% 51.57 

12 
Fe@NC@Pd 370.3 

13 
Ce-MOF 131 

14 
ASNTs@Pd 313.5 

15 
Rh(0)NPs/Fullerene-C60 138 

16 
Bi2Te3-MoS2 1.68 

 

Table S5. Comparison of recyclability of the precious metal catalysts. 

 

Ref. Catalysts Cycle number 

17 Pd/PDMS/PAIHF CMR 6 

18 AuNP-5 20 

19 AuNPs 15 

20 PtCo NDs/N-rGO 7 

21 PtNi/C 10 

22 Ni–Pt NPs (SPNPs) 14 

23 rGO/Au 4 

24 Pt/C60 7 

25 rGO/(PLL/PASP)3-PtNB 4 

26 Co75Pt25 4 

27 CNF/PEI/Pt NPs 5 

28 Pt/SWCNTs-E3 7 
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