Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Disposable electrochemical caffeine sensor based on screen-printed electrode modified with copper-metal organic framework and functionalized multi-walled carbon nanotubes nanocomposite

Muktinan Saraban,^{a, b, c} Apon Numnuam,^{a, b, c} Natha Nontipichet,^a Tawatchai Kangkamano,^d Panote Thavarungkul,^{a, b, c} Proespichaya Kanatharana^{a, b, c} and Suntisak Khumngern*^{a, b}

^aCenter of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

^bDivision of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

^cCenter of Excellence Innovation in Chemistry, Faculty of Science, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand

^dDivision of Chemistry, Faculty of Science, Thaksin University, Phatthalung Campus, Paphayom, Phatthalung 93110, Thailand

*E-mail: suntisak.k@psu.ac.th

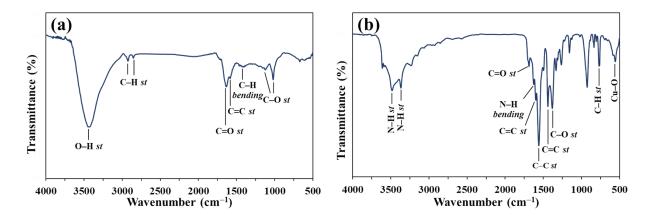


Fig S1. Fourier-transform infrared spectra are of (a) f-MWCNTs and (b) Cu-MOF.

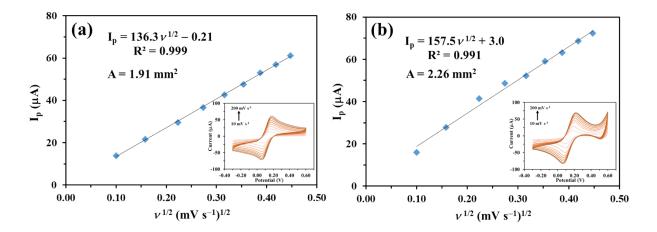


Fig S2. The linear relations between the anodic peak current and the square root of the scan rate are of (a) the f-MWCNTs/SPE and (b) the Cu-MOF@f-MWCNTs/SPE. The insets show the CV responses produced in 5.0 mM K_3 Fe(CN)₆ containing 0.10 M KCl at different scan rates from 10 - 200 mV s⁻¹.