Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Self-supporting FeCoMoP nanosheets for efficient overall water splitting

Hongxi Xiong^{a,b}, Shuihua Tang^{a,b,*}, Mingjie Xu^{a,b}, Zelong Yu^{a,b}, Yuhang Xie^{a,b}, Shaoxiong Zhang^c, Xiaohan Wang^{a,b}, Yonglin Chen^{a,b}, Lei Zhang^{a,d,**}

^a State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University,

Chengdu, 610500, PR China

^b School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, PR China

^c Gathering and Transmission Technology Research Institute of Southwest Oil and gas field company

of CNPC, Chengdu, 610000, PR China

^d School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500,

PR China

* Corresponding author. Shuihua Tang, Tel: +86-2883032879, E-mail: <u>spraytang@hotmail.com</u>;

Lei Zhang, Tel: +86-2883037334, E-mail: zgc166929@aliyun.com

Content:

Fig. S1 SEM images of (a) $CoMo(OH)_x$ and (b) Fe-CoMo(OH)_x.

Fig. S2 (a) SEM image, (b) EDS spectrum, (c-g) elemental mappings of Co, Mo, P and O of Fe-CoMoP/NF.

Fig. S3 (a) HER polarization curve (no iR compensated performed), (b) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (c) Tafel slope of Fe-CoMoP/NF at phosphating temperature of 300 °C and different cation exchange time. (d) HER polarization curve (no iR compensated performed), (e) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (f) Tafel slope of Fe-CoMoP/NF at different phosphatizing temperatures with cation exchange time of 24 h.

Fig. S4 (a) OER polarization curve (no iR compensated performed), (b) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (c) Tafel slope of Fe-CoMoP/NF at phosphating temperature of 300 °C and different cation exchange time. (d) OER polarization curve (no iR compensated performed), (e) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (f) Tafel slope of Fe-CoMoP/NF at different phosphatizing temperatures with cation exchange time of 24 h.

Fig. S5 (a–e) CV curves (f) C_{dl} of CoP/NF, MoP/NF, CoMoP/NF, Fe-CoMo(OH)_x/NF and Fe-CoMoP/NF, respectively.

Fig. S6 Measure the change in the amounts of H_2 and O_2 gases released over time through theoretical models and experiments.

Fig. S7 SEM images of Fe-CoMoP/NF after (a-b) HER and (b-c) OER duration test.

Fig. S8 (a) XPS high-resolution spectra of (a) Co 2p, (b) Mo 2p, (c) Fe 3d and (d) P 2p of Fe-CoMoP/NF before and after HER/OER test.

Table. S1 Atomic percentage of CoMoP measured by XPS.

Table. S2 Atomic percentage of Fe-CoMoP measured by XPS.

Fig. S1 SEM images of (a) $CoMo(OH)_x$ and (b) Fe-CoMo(OH)_x.

Fig. S2 (a) SEM image, (b) EDS spectrum, (c-g) elemental mappings of Co, Mo, P and O of CoMoP/NF.

Fig. S3 (a) HER polarization curve (no iR compensated performed), (b) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (c) Tafel slope of Fe-CoMoP/NF at phosphating temperature of 300°C and different cation exchange time. (d) HER polarization curve (no iR compensated performed), (e) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (f) Tafel slope of Fe-CoMoP/NF at different phosphatizing temperatures with cation exchange time of 24 h.

Fig. S4 (a) OER polarization curve (no iR compensated performed), (b) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (c) Tafel slope of Fe-CoMoP/NF at phosphating temperature of 300°C and different cation exchange time. (d) OER polarization curve (no iR compensated performed), (e) Histogram of overpotential at current densities of 10, 50, and 100 mA cm⁻² and (f) Tafel slope of Fe-CoMoP/NF at different phosphatizing temperatures with cation exchange time

Fig. S5 (a-e) CV curves (f) C_{dl} of CoP/NF, MoP/NF, CoMoP/NF, Fe-CoMo(OH)_x/NF and Fe-CoMoP/NF, respectively.

Fig. S6 Measure the change in the amounts of H_2 and O_2 gases released over time through theoretical models and experiments.

The Faradaic efficiency (FE) was evaluated by the following equation:

$$Q = It$$

$$V theo = \frac{RT}{nFp}Q$$

$$FE = \frac{Vex}{V theo}\%$$
(1)
(2)
(2)
(3)

Here, Q is the charge, I is the electrolysis current, t is the recording time, R is the ideal gas constant, T

is the absolute temperature, n is the number of electrons required for a H₂ and O₂ molecule, F is Faraday's constant, p is the pressure, Vex (mL) is the amount of evolved gas record, Vtheo is the calculated volume by the equation.

Fig. S7 SEM images of Fe-CoMoP/NF after (a-b) HER and (b-c) OER duration test.

Fig. S8 (a) XPS high-resolution spectra of (a) Co 2p, (b) Mo 2p, (c) Fe 3d and (d) P 2p of Fe-CoMoP/NF before and after HER/OER test.

Table. ST Atomic percentage of Colvior measured by ATS.						
Table of element content						
element	C 1s	Ols	Р	2p	Co 2p	Mo 3d
Atomic %	14.96	57.77	17	7.52	7.3	2.45
Table. S2 Atomic percentage of Fe-CoMoP measured by XPS.						
Table of element content						
element	C 1s	O1s	P 2p	Fe 2p	Co 2p	Mo 3d
Atomic %	18.1	54.7	17.26	2.87	4.87	2.2

Table. S1 Atomic percentage of CoMoP measured by XPS