Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Fig. S1 SEM of NCA-1(a), NCA-2(b), NCA-3(c)

Fig. S2 TG analysis of Co_3O_4 @NCA-1, Co_3O_4 @NCA-2, Co_3O_4 @NCA-3 and Co_3O_4 materials.

Fig. S3 Raman of NCA-1 and Co_3O_4 @NCA-1(a) and partial enlarged detail of Co_3O_4 @NCA-1 (b).

Fig. S4 XPS full spectra of Co_3O_4 @NCA-1 (a) and N1s spectra of Co_3O_4 coated with high content of NCA-1(b).

Fig. S5 Nitrogen adsorption-desorption isotherms (a) and BJH pore diameter distribution curve (b) of NCA-1.

The specific surface area of NCA-1 is 2.8 m²/g, which is lower than that of Co_3O_4 (5.3 m² g⁻¹) and ever lower that of Co_3O_4 /NCA-1(355.5 m² g⁻¹). It exhibits a type IV isotherm shown in Fig. 2(a), similar to Co_3O_4 and Co_3O_4 @NCA-1. Furthermore, the pore size distribution demonstrated that not only mesopores and macropores but also micropores are present in the NCA-1 material, which would contribute to lithium storage performance.

Fig. S6 The initial three, the 50th and the 100th CV curves of Co_3O_4 @NCA-2(a) and Co_3O_4 @NCA-3(b).

Fig. S 7 The charge/discharge curves (a) and cycling performance (b) of NCA-1 at a current density of 0.1A g⁻¹.

Fig. S8 Cycling performance and the corresponding coulombic efficiency of Co₃O₄@NCA-2 and Co₃O₄@NCA-3 at 0.1 A g⁻¹ (a) and 0.5 A g⁻¹ (b), rate performance of Co₃O₄@NCA-2 and Co₃O₄@NCA-3(c).

cobart-based/carbon hanocomposites as anode materials for LIBs			
Active material	Current density mA g ⁻¹	Capacity mAh g ⁻¹ (Nth)	Reference
Co ₃ O ₄ @NCA-1	100	608(200)	
	100	659.9(100)	This work
	500	291.7(500)	
NiO-Co ₃ O ₄	70	673 (100)	[44]
Co ₃ O ₄	89	423(30)	[45]
	89	321(60)	
Co ₃ O ₄ @TiO ₂ @C	200	380.3(100)	[46]
Co ₃ O ₄	90	166(100)	[47]
Co ₃ O ₄ /TiO ₂	100	660(120)	[48]

Tab. S1 Comparison of the electrochemical performances of various cobalt-based/carbon nanocomposites as anode materials for LIBs