# Dinuclear platinum(II) complexes with biphenyl-based 

## bis-carbene ligands

Rajat Naskar, ${ }^{\S a}$ Bhaskar Monda,ls ${ }^{a}$ Diya Sengupta, ${ }^{a}$ Aninda Ghosh, ${ }^{a}$ Somenath Garai ${ }^{b}$ and Ramananda Maity*a
[a]University of Calcutta, 92-APC Road, Kolkata 700009, India
E-mail: rmchem@caluniv.ac.in
[b]Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar
Pradesh, India.
§: Both authors contributed equally.
Supporting Information
Index
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $[2]$ in $\mathrm{CDCl}_{3}$.
Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [2] in $\mathrm{CDCl}_{3}$.
Figure S3. HMQC NMR spectrum of [2] in $\mathrm{CDCl}_{3}$.
Figure S4. HMBC NMR spectrum of [2] in $\mathrm{CDCl}_{3}$.
Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $[3]$ in $\mathrm{CDCl}_{3}$.
Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.
Figure S7. HSQC NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.
Figure S8. HMBC NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $[5]$ in $\mathrm{CDCl}_{3}$.
Figure S10. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[5]$ in $\mathrm{CDCl}_{3}$.
Figure S11. HMQC NMR spectrum of [5] in $\mathrm{CDCl}_{3}$.
Figure S12. HMBC NMR spectrum of [5] in $\mathrm{CDCl}_{3}$.
Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.
Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.
Figure S15. HMQC NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.
Figure S16. HMBC NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.
Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CDCl}_{3}$.
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of 8 in $\mathrm{CDCl}_{3}$.
Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 8 in $\mathrm{CDCl}_{3}$.
Table S1.Crystallographic details.
Table S2. Selected bond lengths in $\AA$.
Table S3. Selected bond angles in ${ }^{\circ}$


Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of [2] in $\mathrm{CDCl}_{3}$ ( $\delta=1.56: \mathrm{H}_{2} \mathrm{O}$ from $\mathrm{CDCl}_{3}$ solvent).


Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[2]$ in $\mathrm{CDCl}_{3}$.


Figure S3. HMQC NMR spectrum of [2] in $\mathrm{CDCl}_{3}$.


Figure S4. HMBC NMR spectrum of [2] in $\mathrm{CDCl}_{3}\left({ }^{195} \mathrm{Pt}-{ }^{13} \mathrm{C}\right.$ coupling at $\delta=4.11 \mathrm{ppm}{ }^{1} \mathrm{H}$ scale).


Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of [3] in $\mathrm{CDCl}_{3}$ ( $\delta=1.57: \mathrm{H}_{2} \mathrm{O}$ from $\mathrm{CDCl}_{3}$ solvent).


Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.


Figure S7. HSQC NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.


Figure S8. HMBC NMR spectrum of [3] in $\mathrm{CDCl}_{3}$.


Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $[5]$ in $\mathrm{CDCl}_{3}$.


Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[5]$ in $\mathrm{CDCl}_{3}$.


Figure S11. HMQC NMR spectrum of [5] in $\mathrm{CDCl}_{3}$.


Figure S12. HMBC NMR spectrum of [5] in $\mathrm{CDCl}_{3}$.


Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $[6]$ in $\mathrm{CDCl}_{3}$.


Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[6]$ in $\mathrm{CDCl}_{3}$.


Figure S15. HMQC NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.


Figure S16. HMBC NMR spectrum of [6] in $\mathrm{CDCl}_{3}$.


Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CDCl}_{3}\left(\delta=1.55: \mathrm{H}_{2} \mathrm{O}\right.$ from $\mathrm{CDCl}_{3}$ solvent; very small humps at $\delta \sim 1.25$ and $\sim 0.88$ from the very small amount of grease in $\mathrm{CDCl}_{3}$ ).


Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of 8 in $\mathrm{CDCl}_{3}$.


Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 8 in $\mathrm{CDCl}_{3}$.

Table S1. Crystallographic details

|  | $[\mathbf{2}]$ |
| :--- | :--- |
| Chemical <br> formula | C30H28I4N6Pt2 |
| $M_{\mathrm{r}}$ | 1370.34 |
| Crystal system | monoclinic |
| Space group | C2 |
| a $(\AA)$ | $14.136(3)$ |
| b $(\AA)$ | $8.7735(16)$ |
| $\mathrm{c}(\AA)$ | $17.072(3)$ |
| $\alpha\left({ }^{\circ}\right)$ | 90.00 |
| $\beta\left({ }^{\circ}\right)$ | $97.292(7)$ |
| $\gamma\left({ }^{\circ}\right)$ | 90.00 |
| $\mathrm{~V}\left(\AA^{3}\right)$ | $2100.2(7)$ |
| Z | 2 |
| Densitiy $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 2.167 |
| $\mathrm{~F}(000)$ | 1236.0 |
| Radiation Type | $\mathrm{Mo} \mathrm{K}_{\alpha}$ |
| $\mu\left(\mathrm{mm}{ }^{-1}\right)$ | 9.618 |
| Crystal size | $0.24 \times 0.13 \times 0.12$ |
| Meas. Refl. | 10224 |
| Indep. Refl. | 4463 |
| Obsvd. $[I$ | 4029 |
| $2 \sigma(I)]$ refl. |  |
| $\mathrm{R}_{\text {int }}$ | 0.0615 |
| $\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right]$ | 0.0598 |
| wR(F $\left.\mathrm{F}^{2}\right)$ | 0.1602 |
| S |  |

Table S2. Selected bond lengths in $\AA$

| Atoms | $[2]$ |
| :--- | :---: |
| I1 - Pt1 - I2 | $177.98(7)$ |
| I1 - Pt1 - N3 | $88.4(5)$ |
| I2 - Pt1 - N3 | $89.7(5)$ |
| I1 - Pt1 - C1 | $93.4(5)$ |
| I2 - Pt1 - C1 | $88.6(5)$ |
| C1 - Pt1 - N3 | $176.5(8)$ |
| N1 - C1 - N2 | $104.6(19)$ |

Table S3. Selected bond angles in ${ }^{\circ}$

| Atoms | $[\mathbf{2}]$ |
| :---: | :---: |
| $\mathbf{P t} 1 \mathbf{- 1 1}$ | $2.6244(16)$ |
| $\mathbf{P t} 1-\mathbf{I 2}$ | $2.5894(17)$ |
| $\mathbf{P t} 1-\mathbf{N} 3$ | $2.090(19)$ |
| $\mathbf{P t} 1-\mathbf{C 1}$ | $2.04(2)$ |
| $\mathbf{N} 1-\mathbf{C 1}$ | $1.34(3)$ |
| $\mathbf{N} \mathbf{2}-\mathbf{C 1}$ | $1.29(3)$ |

