Supplementary Materials

A novel route to fabricate superhydrophobic surface on copper

substrate without additional low surface energy materials

Fan Jiang*a, Tongyu Songa, Hongyan Wua, Xinye Yanga, Shaofu Lib, Maoqiao Xiang*b

a, School of Chemistry and Materials Science, Nanjing University of Information Science &

Technology, 210044, Nanjing, China

b, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

1. Appearance of electrolyte system

Fig. S1. Appearance of the deep eutectic solvent: (a) without CuCl₂·2H₂O; (b) with CuCl₂·2H₂O

After the addition of 0.2 M CuCl₂ \cdot 2H₂O, the color of the liquid changed from colorless to brown.

2. Wettability performance

Fig. S2. The wettability test of copper coating after heat treatment

From the Fig. S2, it could be seen that the superhydrophobic sample had a low adhesion to the water droplet.

3. Chemical composition

Fig. S3. XRD patterns of different samples

As can be seen from Fig. S3, the superhydrophobic sample was composed of copper and copper oxide. From the EDS analysis in Fig. S4, an increase in oxygen content and C/Cu value indicated the oxidation and adsorption of organic carbon were formed on copper surface after heat treatment. The peaks located at 284.6 eV, 285.5 eV and 288.3 eV in Fig.S4d were related to the binding energy of C-C, C-O and C=O, respectively. The peaks located at 944.1 eV and 946.4 eV in Fig.S4f were related to the binding energy of CuO and Cu₂O, respectively.

Fig. S4. EDS spectrum: region 1 (a), region 2 (b); XPS spectrum of the superhydrophobic coating: survey spectrum (c), C1s region (d), O1s region(e) and

Cu2p region(f).

4. Anti-corrosion analysis

Table S1 shows the corrosion potential (E_{corr}) and current density (j_{corr})

calculated from the potentiodynamic polarization curves in Fig.3a.

Sample	E _{corr} /V	j_{corr} /A·cm ⁻²	CR/mm·a ⁻¹		
Superhydrophobic coating	-0.18	4.11×10 ⁻⁷	0.005		
Bare copper	-0.27	1.74×10 ⁻⁶	0.020		
Bare copper after heat treatment	-0.31	3.04×10 ⁻⁶	0.036		
Copper coating	-0.34	5.59×10-6	0.065		
Superhydrophobic coating in	0.00	4 20 10 7	0.005		
reference [15]	-0.23	4.28×10-7	0.005		
Superhydrophobic coating in					
reference [16]	-0.23	4.08×10-7	0.005		

Table S1. E_{corr} and j_{corr} and corrosion rate (CR) of different samples

Table S2. Parameters extracted from Nyquist plots using equivalent circuit modelling.

I Sample		CPEf		CPEdl						
	Rs/Ω ·cm ²	$Y1/\Omega$ - $1 \cdot s_n \cdot c$ m^{-2}	nı	Cf/F·c m ⁻²	Cf/F·c Rf/ Ω · Y2/ Ω - m ⁻² cm ² ¹ ·s _n ·c n ₂ m ⁻²	C _{dl} /F·cm ⁻²	Rct/Ω·cm ²	W, Y_0 / Ω^2 ¹ ·s ⁿ ·cm ⁻²		
Superhydrophobic coating	7.90	4.03× 10 ⁻⁶	8.45× 10 ⁻¹	1.29× 10 ⁻⁶	4.96× 10 ²			4.63×10 ⁻⁷	9.60×10 ⁴	1.08×10-4
Bare copper	8.35					1.72× 10 ⁻⁵	8.73× 10- ¹	4.72×10 ⁻⁶	1.11×10 ⁴	7.52×10-4
Bare copper after heat treatment	7.16					2.03× 10 ⁻⁵	8.66× 10 ⁻¹	5.16×10 ⁻⁶	9.23×10 ³	1.04×10-3
Copper coating	9.99					2.57× 10 ⁻⁵	8.58× 10 ⁻¹	6.56×10 ⁻⁶	4.99×10 ³	1.54×10 ⁻³

where $R_{\rm s}$ is the the solution resistance, CPE refers to a constant phase element,

 C_f is the the capacitance value of the protection layer, Y_1 is the constant of the CPE_f element, C_{dl} refers to the the capacitance value of the electric double layer, Y_2 is the constant of the CPE_{dl} element, R_f , R_{ct} and W correspond to the protection layer resistance, charge transfer resistance and Warburg impedance, respectively.

5. Mechanical stability

Fig. S5. The relationship between the abrasion length and the WCAs of the

sample modified in 1 wt.% palmitic acid ethanol solution for 24 h.

Fig. S6. Finger press test of superhydrophobic coating. After sixth finger press, the superhydrophobic sample maintain a large WCA of

154.6°.

Fig. S7. The relationship between the tape pull cycles and the WCAs.