Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Novel heterojunction layer assisted interfacial defect control

strategy for high-performance solar cells

Zihui Liang^{1,2#}, Qiangqiang Cui^{1#}, Yijun Zhou^{2#}, Cheng Zeng¹, Fengxiang Chen^{1*}, Li Zhao^{2*}, Changhai Yi^{1*}

¹National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China

²Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China

*Corresponding authors

Email: fxchen_czx@wtu.edu.cn; zhaoli7376@163.com; ych@wtu.edu.cn

Contribute Equally

Supplementary experimental section

Preparation of g-C₃N₄: 20 g of melamine is placed in an alumina crucible cover with aluminum foil, and the temperature is raised to 550 °C (heating rate is 10 °C/min)) and held for 3 h. The product is naturally cooled to room temperature.

Preparation of GO: 3 g of 99.95% pure graphite sheets, 2.5 g of $K_2S_2O_8$ and 2.5 g of P_2O_5 were dissolved in 24 ml of concentrated sulfuric acid and then stirred at 80 °C for about 4.5 hours. After cooling, it was diluted with deionized water and continued to stir for 12 hours, and filtered with a 0.45 µm porous membrane. Subsequently, it is cleaned with deionized water to a pH value of about 7 and dried at 40 °C for 12 hours to obtain pre-oxidized graphite.

The pre-oxidized graphite powder is added to 120 ml of concentrated sulfuric acid and stirred in an ice bath at 0 °C until completely dissolved. Then slowly and continuously add 10 g of KMnO₄ and 1.5 g of NaNO₃, controlling the reaction temperature not to exceed 10 °C, after stirring for 1 hour, heating up to 35 °C and continue stirring for 2 hours. Then slowly add 125 ml of deionized water to the reaction solution, transfer the flask containing the solution to the oil bath at 98 °C, and continue stirring for 15 minutes. Then 250 ml of deionized water was added to dilute, and finally 10 ml of hydrogen peroxide (30%) was added to the reaction solution, so that the residual $KMnO_4$ and manganese dioxide reaction to produce soluble manganese sulfate. The resulting solution will turn yellow-brown in color. The product was cleaned several times with 35% concentrated hydrochloric acid, and then cleaned with deionized water to pH 6, and dispersed with ultrasonic waves to ensure that the product has a good dispersion effect. The prepared product is dried at 40 °C to obtain graphene oxide powder.

Figure S1. The Cross-sectional SEM image of PSCs

Figure S2

Figure S2. Statistic histogram distribution of crystal grain sizes for the MAPbI₃ film and $GO/g-C_3N_4/MAPbI_3$

Figure S3. The water contact angles of MAPbI₃ and $GO/g-C_3N_4/MAPbI_3$ perovskite

films

Figure S4. The forward/reverse IV characteristics of the "gold electrode /GO/g- C_3N_4 /gold electrode" structure

Figure S5

Figure S5. The XPS spectra of MAPbI3 and GO/g-C3N4/MAPbI3 perovskite films

Figure S6

Figure S6.J-V curves of PSCs based on pristine, $g-C_3N_4/GO/MAPbI_3$,GO/MAPbI_3and $g-C_3N_4/MAPbI_3$ perovskitefilms.

Figure S7

Figure S7. Statistical distribution of PCE, V_{OC} , J_{SC} , and FF for the pristine and GO/g-
C₃N₄/MAPbI₃PSC.

Figure S8. Long-term stability measurements of PSCs aging for 1080 h.

Figure S9. The XRD patterns of the (a) MAPbI₃ and (b) GO/g-C₃N₄/MAPbI₃ perovskite films in ambient air for 30 days

Table S1

	A1	$\tau_1(ns)$	A ₂	$\tau_2(ns)$	τ _{ave} (ns)
MAPbI ₃	184.81	15.70	747.34	231.45	227.89
GO/CN/MAPbI ₃	436.04	29.92	512.79	127.01	110.81

Table S1 Parameters calculated from the time-resolved PL spectra

Table S2

	2				
	$V_{oc}(V)$	$J_{sc}(mA\ cm^{-2})$	FF (%)	PCE (%)	
MAPbI ₃	1.10	23.64	78.86	20.50	
CN/GO/MAPbI ₃	1.10	23.21	78.62	20.07	
CN/MAPbI ₃	1.11	24.38	79.10	21.21	
GO/MAPbI ₃	1.10	24.51	79.46	21.42	
GO/CN/MAPbI ₃	1.12	24.79	79.80	22.58	

Table S2 Photovoltaic parameters of the n-i-p structure perovskite solar cells with

 different interface modification layer