Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Data

Tailoring of novel morpholine-sulphonamide linked thiazole moiety as dual targeting DHFR/DNA gyrase inhibitors: Synthesis, antimicrobial, antibiofilm activities and DFT with molecular modelling studies

Moaz M. Abdou^{a, *}, Essam M. Eliwa^b; M. A. M. Abdel Reheim^c; Ahmed Abu-Rayyan^d; Shimaa M. Abd El-Gilil^e; Mohammed Abu-Elghait^f; Mohamed H. Sharaf^f; Mohamed H. kalaba^f; Ahmed H. Halawa^b; and Walid E. Elgammal^b

^aEgyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt.
^bChemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
^cDepartment of Chemistry, Faculty of Science, Arish University, Arish 45511, Egypt.
^dFaculty of Arts & Science, Applied Science Private University, Amman, 11931, Jordan
^eDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt.
^eDepartment of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.

*Corresponding authors: Moaz M. Abdou (moaz.chem@gmail.com)

1. Materials and Instrumental techniques

Melting points were defined on a SMP50 Digital APP (Bibby Scientific, Staffordshire, UK) 120/230V, in open capillaries and are uncorrected. The mid-IR spectra (KBr, v/cm⁻¹) were recorded on the CARY 630 FT-IR spectrophotometer (Agilent, Santa Clara, CA, USA). The NMR spectra (¹H NMR and ¹³C NMR) were recorded on a Bruker EX-400 MHz (¹H: 300/500 MHz, ¹³C: 75/125 MHz) spectrometer (Bruker, USA) at room temperature. Tetramethylsilane (TMS) is used for internal calibration (¹H NMR and ¹³C NMR: 0.00 ppm). The chemical shifts were reported in parts per million (ppm) on the δ scale and relative to residual solvent peaks (CDCl₃: ¹H: 7.26 ppm, ¹³C: 77.5 ppm, DMSO-*d*₆: ¹H: 2.50 ppm, ¹³C: 39.5 ppm). Coupling constants (*J*) are reported in Hz with the following abbreviations used to indicate splitting: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal.

Electron ionization mass spectrometry (EI-MS) spectra were attained through the Thermo ScientificTM ISQTM LT Single Quadrupole GC-MS system using Xcalibur data acquisition software (Shimadzu, Kyoto, Japan) at the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Nasr City, Cairo, Egypt). For the chemical synthesis, starting materials and reagents were obtained from commercial sources particularly Acros Organics TM (Geel, Belgium) and used without further purification, unless otherwise indicated. Solvents were obtained from Thermo Fisher Scientific TM and employed without additional purification. For biological screening, clinical Specimens (urine, abscess, tooth, sputum, tonsils, wound, and throat swabs) were collected from Damanhur National Medical Institute (DNMI), Egypt. Chemical syntheses were done using miniscale reaction apparatus, and their procedures were not optimized. All the reactions were implemented utilizing oven-dried glassware. The purity of the synthesized compounds was investigated by TLC, performed on Merck precoated silica gel 60 F₂₅₄ aluminum sheets with solvent mixture of DCM-MeOH (99-1) as eluent system. Spots were visualized under UV illumination at 254 nm. Compounds names are derived from ChemOffice-v2020 and are not necessarily identical with the IUPAC nomenclature. Schemes were produced by the same version of ChemOffice. IR data were plotted by OriginPro-v2021. NMR spectra were delineated *via* MestReNova-v14.2.1.

Figure S2. ¹³C NMR (75 MHz, CDCl₃) of **2**.

Figure S4. FT-IR of 2.

Figure S5. ¹H NMR (300 MHz, DMSO-*d*₆) of **3**.

Figure S6. ¹³C NMR (75 MHz, DMSO- d_6) of **3**.

Figure S8. FT-IR of 3.

Figure S9. ¹H NMR (500 MHz, DMSO-*d*₆) of **4a**.

Figure S10. ¹³C NMR (125 MHz, DMSO) of 4a.

Figure S11. EI-MS of 4a.

Figure S12. FT-IR of 4a.

Figure S13. ¹H NMR (500 MHz, DMSO-*d*₆) of **4b**.

Figure S14. ¹³C NMR (125 MHz, DMSO) of 4b.

Figure S16. FT-IR of 4b.

^{.3.0 12.5 12.0 11.5 11.0 10.5} 7.0 6.5 6.0 f1 (ppm) 3.0 2.5 0.0 10.0 9.5 9.0 8.5 8.0 7.5 5.5 5.0 4.5 4.0 3.5 2.0 1.5 1.0 0.5

Figure S17. ¹H NMR (500 MHz, DMSO-*d*₆) of 5.

Figure S19. FT-IR of 5.

Figure S23. ¹H NMR (500 MHz, DMSO-*d*₆) of **7**.

Figure S24. ¹³C NMR (125 MHz, DMSO) of 7.

Figure S25. EI-MS of 7.

Table S1. Physicochemical properties, lipophilicity, and drug-likeness nature of precursors 2, 3, and the target compounds 4a,b-7.

Cnd	Physicochemical properties					Lipophilicity		Drug-likeness	
								(Accepted/Rejected)	
Cpu.	MW	nRot ^a	nHA ^b	nHD ^c	TPSA ^d	lagDe	logD ^f	Lipinski	Golden
	(g/mol)	(≠)	(≠)	(≠)	(Ų)	logr		rule ^g	Triangle rule ^h
2	313.1	5	6	0	72.91	1.333	1.188	Accepted	Accepted
3	386.11	7	8	3	106.25	1.933	1.466	Accepted	Accepted
4 a	562.12	9	10	1	117.84	5.585	4.625	Rejected	Rejected
4b	542.18	9	10	1	117.84	5.373	4.632	Rejected	Rejected
5	496.15	10	10	1	119.42	3.504	3.116	Accepted	Accepted
6	554.13	7	10	1	126.56	4.306	3.161	Accepted	Rejected
7	496.11	8	11	1	135.96	1.778	1.310	Accepted	Accepted

^a nRot = no of Rotatable bonds; ^b nHA = Hydrogen Bond Acceptor; ^c nHD = Hydrogen Bond Donor; ^d TPSA = Topological polar surface area; ^e logP = The partition coefficient between *n*-octanol and water, optimal 0–3; ^f logD = logP at physiological pH 7.4, optimal 1–3; ^g Lipinski (RO5) criteria range are lipophilicity (logP) \leq 5, MW \leq 500, H-bond donors \leq 5 and H-bond acceptors \leq 10; ^h Golden Triangle criteria range are: 200 \leq MW \leq 50, -2 \leq logD \leq 5.

No.	Conformer	ΔE (eV)	ΔE (kcal/mol)
1	EE	Minimum	Minimum
2	ZE	0.05	1.18
3	ZZ	0.18	4.15
4	EZ	0.21	4.90
5	Enol-thiazole	0.75	17.23

 Table S2. Geometry optimization and conformational stability of 7.