Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Tetrazolopyrimidine Tethered Phenothiazine Molecular Hybrids: Synthesis, Biological and Molecular Docking Studies

Shunmugam Iniyaval,^a Vadivel Saravanan^a, Chun-Wai Mai^b and Chennan Ramalingan^{a*}

 ^a Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamilnadu, India
^b Department of Pharmaceutical Chemistry, UCSI University, 56000, Kualalumpur, Malaysia

Supplementary Information

Atom	x	У	Z	Ueq
S(1)	867(1)	3839(1)	2100(1)	43(1)
O(1)	4411(1)	969(1)	3203(1)	60(1)
O(2)	3684(1)	1132(1)	4633(1)	47(1)
N(1)	4551(1)	4699(2)	3279(1)	42(1)
N(2)	4284(1)	6316(2)	4397(2)	45(1)
N(3)	3832(1)	6343(2)	5274(2)	48(1)
N(4)	3508(1)	5336(2)	5499(1)	42(1)
N(5)	3749(1)	4613(2)	4749(1)	33(1)
N(6)	-314(1)	3391(2)	3887(1)	32(1)
C(1)	3480(1)	3391(2)	4665(2)	30(1)
C(2)	4067(1)	2855(2)	3860(2)	33(1)
C(3)	4538(1)	3501(2)	3207(2)	38(1)
C(4)	4215(1)	5225(2)	4098(2)	34(1)
C(5)	5102(2)	3052(2)	2377(2)	62(1)
C(6)	4086(1)	1581(2)	3834(2)	36(1)
C(7)	3644(2)	-125(2)	4717(2)	52(1)
C(8)	3203(2)	-402(3)	5675(2)	82(1)
C(9)	2482(1)	3326(2)	4449(2)	28(1)
C(10)	1877(1)	3056(2)	5187(2)	32(1)
C(11)	961(1)	3086(2)	5008(2)	33(1)
C(12)	615(1)	3376(2)	4079(1)	28(1)
C(13)	1230(1)	3623(2)	3324(1)	29(1)
C(14)	2146(1)	3611(2)	3518(1)	30(1)
C(15)	-187(1)	4464(2)	2328(2)	35(1)
C(16)	-553(2)	5205(2)	1623(2)	47(1)
C(17)	-1427(2)	5586(2)	1697(2)	53(1)
C(18)	-1928(2)	5233(2)	2495(2)	49(1)
C(19)	-1565(1)	4533(2)	3219(2)	41(1)
C(20)	-685(1)	4126(2)	3157(2)	31(1)
C(21)	-914(1)	2807(2)	4590(2)	33(1)
C(22)	-1212(1)	3474(2)	5501(2)	36(1)
C(23)	-1827(2)	2719(2)	6127(2)	47(1)
C(24)	-2145(2)	3278(2)	7069(2)	60(1)

Table S1. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for non-H atoms with esd's in parenthesis

Atoms	Bond length	Atoms	Bond length
S(1)-C(13)	1.739(4)	C(20)-C(15)-S(1)	120.4(2)
S(1)-C(15)	1.748(4)	C(17)-C(16)-C(15)	120.9(2)
O(1)-C(6)	1.201(3)	C(18)-C(17)-C(16)	118.8(2)
O(2)-C(6)	1.332(3)	C(19)-C(18)-C(17)	121.0(3)
O(2)-C(7)	1.446(4)	C(18)-C(19)-C(20)	121.3(2)
N(1)-C(4)	1.350(3)	C(15)-C(20)-C(19)	117.3(2)
N(1)-C(3)	1.377(4)	C(15)-C(20)-N(6)	121.0(2)
N(1)-H(1)	0.8600	C(19)-C(20)-N(6)	121.7(2)
N(2)-C(4)	1.316(4)	N(6)-C(21)-C(22)	118.2(2)
N(2)-N(3)	1.358(4)	C(21)-C(22)-C(23)	109.8(2)
N(3)-N(4)	1.286(3)	C(24)-C(23)-C(22)	114.7(2)
N(4)-N(5)	1.351(3)	Atoms	Bond angle
N(5)-C(4)	1.319(3)	C(13)-S(1)-C(15)	99.5(1)
N(5)-C(1)	1.461(4)	C(6)-O(2)-C(7)	117.8(2)
N(6)-C(12)	1.399(4)	C(4)-N(1)-C(3)	119.8(2)
N(6)-C(20)	1.400(3)	C(4)-N(2)-N(3)	104.3(2)
N(6)-C(21)	1.463(3)	N(4)-N(3)-N(2)	111.7(2)
C(1)-C(9)	1.508(4)	N(3)-N(4)-N(5)	105.9(2)
C(1)-C(2)	1.521(3)	C(4)-N(5)-N(4)	108.0(2)
C(1)-H(1A)	0.9800	C(4)-N(5)-C(1)	127.1(2)
C(2)-C(3)	1.346(3)	N(4)-N(5)-C(1)	124.8(2)
C(2)-C(6)	1.461(4)	C(12)-N(6)-C(20)	121.1(2)
C(3)-C(5)	1.488(4)	C(12)-N(6)-C(21)	118.7(2)
C(7)-C(8)	1.480(4)	C(20)-N(6)-C(21)	119.1(2)
C(9)-C(10)	1.375(3)	N(5)-C(1)-C(9)	109.2(2)
C(9)-C(14)	1.379(4)	N(5)-C(1)-C(2)	106.5(2)
C(10)-C(11)	1.379(4)	C(9)-C(1)-C(2)	114.2(2)
C(11)-C(12)	1.383(4)	C(3)-C(2)-C(6)	121.6(2)
C(12)-C(13)	1.396(3)	C(3)-C(2)-C(1)	122.8(2)
C(13)-C(14)	1.380(4)	C(6)-C(2)-C(1)	115.6(2)
C(15)-C(16)	1.378(4)	C(2)-C(3)-N(1)	120.7(2)
C(15)-C(20)	1.393(4)	C(2)-C(3)-C(5)	126.3(2)
C(16)-C(17)	1.372(4)	N(1)-C(3)-C(5)	113.0(2)

Table S2. Bond lengths (Å) and bond angles (°) with esd's in parenthesis

C(17)-C(18)	1.367(4)	N(2)-C(4)-N(5)	110.1(2)
C(18)-C(19)	1.366(4)	N(2)-C(4)-N(1)	130.0(2)
C(19)-C(20)	1.390(4)	N(5)-C(4)-N(1)	119.9(2)
C(21)-C(22)	1.510(4)	O(1)-C(6)-O(2)	121.6(2)
C(22)-C(23)	1.515(3)	O(1)-C(6)-C(2)	127.4(2)
C(23)-C(24)	1.496(4)	O(2)-C(6)-C(2)	111.0(2)
C(11)-C(12)-C(13)	117.3(2)	O(2)-C(7)-C(8)	107.4(2)
C(11)-C(12)-N(6)	121.8(2)	O(2)-C(7)-H(7A)	110.2
C(13)-C(12)-N(6)	120.9(2)	C(8)-C(7)-H(7A)	110.2
C(14)-C(13)-C(12)	120.7(2)	O(2)-C(7)-H(7B)	110.2
C(14)-C(13)-S(1)	118.4(2)	C(10)-C(9)-C(14)	118.0(2)
C(12)-C(13)-S(1)	120.7(2)	C(10)-C(9)-C(1)	121.2(2)
C(9)-C(14)-C(13)	121.4(2)	C(14)-C(9)-C(1)	120.7(2)
C(16)-C(15)-C(20)	120.6(2)	C(9)-C(10)-C(11)	121.1(2)
C(16)-C(15)-S(1)	118.7(2)	C(10)-C(11)-C(12)	121.4(2)

Atoms	Torsion angle	Atoms	Torsion angle
C(4)-N(2)-N(3)-N(4)	0.0(2)	C(9)-C(10)-C(11)-C(12)	0.8(3)
N(2)-N(3)-N(4)-N(5)	0.0(2)	C(10)-C(11)-C(12)-C(13)	0.8(3)
N(3)-N(4)-N(5)-C(4)	0.0(2)	C(10)-C(11)-C(12)-N(6)	178.9(2)
N(3)-N(4)-N(5)-C(1)	-176.4(2)	C(20)-N(6)-C(12)-C(11)	151.9(2)
C(4)-N(5)-C(1)-C(9)	-106.9(2)	C(21)-N(6)-C(12)-C(11)	-15.9(3)
N(4)-N(5)-C(1)-C(9)	68.8(3)	C(20)-N(6)-C(12)-C(13)	-30.1(3)
C(4)-N(5)-C(1)-C(2)	16.9(3)	C(21)-N(6)-C(12)-C(13)	162.2(2)
N(4)-N(5)-C(1)-C(2)	-167.4(2)	C(11)-C(12)-C(13)-C(14)	-2.0(3)
N(5)-C(1)-C(2)-C(3)	-16.0(3)	N(6)-C(12)-C(13)-C(14)	179.8(2)
C(9)-C(1)-C(2)-C(3)	104.7(2)	C(11)-C(12)-C(13)-S(1)	172.9(2)
N(5)-C(1)-C(2)-C(6)	164.3(2)	N(6)-C(12)-C(13)-S(1)	-5.2(3)
C(9)-C(1)-C(2)-C(6)	-75.1(2)	C(15)-S(1)-C(13)-C(14)	-152.9(2)
C(6)-C(2)-C(3)-N(1)	-176.4(2)	C(15)-S(1)-C(13)-C(12)	32.0(2)
C(1)-C(2)-C(3)-N(1)	3.9(3)	C(10)-C(9)-C(14)-C(13)	-0.2(3)
C(6)-C(2)-C(3)-C(5)	2.0(4)	C(1)-C(9)-C(14)-C(13)	-176.1(2)
C(1)-C(2)-C(3)-C(5)	-177.8(2)	C(12)-C(13)-C(14)-C(9)	1.8(3)
C(4)-N(1)-C(3)-C(2)	10.9(3)	S(1)-C(13)-C(14)-C(9)	-173.3(2)
C(4)-N(1)-C(3)-C(5)	-167.7(2)	C(13)-S(1)-C(15)-C(16)	153.2(2)
N(3)-N(2)-C(4)-N(5)	0.0(2)	C(13)-S(1)-C(15)-C(20)	-33.3(2)
N(3)-N(2)-C(4)-N(1)	-178.7(2)	C(20)-C(15)-C(16)-C(17)	-2.9(3)
N(4)-N(5)-C(4)-N(2)	0.0(2)	S(1)-C(15)-C(16)-C(17)	170.7(2)
C(1)-N(5)-C(4)-N(2)	176.3(2)	C(15)-C(16)-C(17)-C(18)	1.1(4)
N(4)-N(5)-C(4)-N(1)	178.9(2)	C(16)-C(17)-C(18)-C(19)	1.3(4)
C(1)-N(5)-C(4)-N(1)	-4.8(3)	C(17)-C(18)-C(19)-C(20)	-1.9(4)
C(3)-N(1)-C(4)-N(2)	167.9(2)	C(16)-C(15)-C(20)-C(19)	2.2(3)
C(3)-N(1)-C(4)-N(5)	-10.8(3)	S(1)-C(15)-C(20)-C(19)	-171.3(2)
C(7)-O(2)-C(6)-O(1)	-0.5(3)	C(16)-C(15)-C(20)-N(6)	-178.8(2)
C(7)-O(2)-C(6)-C(2)	179.8(2)	S(1)-C(15)-C(20)-N(6)	7.7(3)
C(3)-C(2)-C(6)-O(1)	-9.1(4)	C(18)-C(19)-C(20)-C(15)	0.1(3)
C(1)-C(2)-C(6)-O(1)	170.7(2)	C(18)-C(19)-C(20)-N(6)	-178.8(2)
C(3)-C(2)-C(6)-O(2)	170.6(2)	C(12)-N(6)-C(20)-C(15)	28.7(3)
C(1)-C(2)-C(6)-O(2)	-9.6(3)	C(21)-N(6)-C(20)-C(15)	-163.6(2)
C(6)-O(2)-C(7)-C(8)	177.9(2)	C(12)-N(6)-C(20)-C(19)	-152.4(2)
N(5)-C(1)-C(9)-C(10)	-102.1(2)	C(21)-N(6)-C(20)-C(19)	15.3(3)
C(2)-C(1)-C(9)-C(10)	138.7(2)	C(12)-N(6)-C(21)-C(22)	84.4(2)
N(5)-C(1)-C(9)-C(14)	73.6(2)	C(20)-N(6)-C(21)-C(22)	-83.6(3)
C(2)-C(1)-C(9)-C(14)	-45.5(3)	N(6)-C(21)-C(22)-C(23)	179.9(2)
C(14)-C(9)-C(10)-C(11)	-1.0(3)	C(21)-C(22)-C(23)-C(24)	178.3(2)
C(1)-C(9)-C(10)-C(11)	174.8(2)		

Table S3. Torsion angles (°) with esd's in parenthesis

Table S4. Geometric details of hydrogen bond (Å,°) (D-donor; A-acceptor; H-hydrogen)

Interactions	D-H	HA	DA	D-HA
N1-H1O1	0.86	2.07	2.912	167
C19-H19N4	0.93	2.60	3.369	141
C11-H11S1	0.93	2.94	3.570	126

Fig S1. Intermolecular C11-H11...S1 interactions in compound 6b.

Fig S2. Intermolecular C19-H19...N4 interactions in compound. (22 number)

Scheme S1. Plausible mechanism for the synthesis of tetrazolopyrimidine tethered phenothiazine molecular hybrids

FT-IR Spectrum of **5b**

FT-IR Spectrum of **6b**

FT-IR Spectrum of 6c

FT-IR Spectrum of 7a

FT-IR Spectrum of 7b

FT-IR Spectrum of 8a

FT-IR Spectrum of 9a

FT-IR Spectrum of 9b

¹H NMR Spectrum of 5a

¹H NMR Spectrum of **5b**

¹H NMR Spectrum of 7a

¹H NMR Spectrum of 9a

¹³C NMR Spectrum of **5a**

¹³C NMR Spectrum of **6b**

¹³C NMR Spectrum of **6c**

¹³C NMR Spectrum of 7a

¹³C NMR Spectrum of **9a**

¹³C NMR Spectrum of **9b**

HRMS spectrum of 5a

HRMS spectrum of 5c

HRMS spectrum of 6a