Supporting information

Hydrogenation of Nitriles to Primary Amines Over Highly

Dispersed Ni/SiC Catalyst Without Ammonia Addition

Zhi-Feng Jiao, Zhi-Yuan Zheng, Ji-Xiao Zhao*, Cheng-Du Zhang, Tian-Yu Xu, and Xiang-Yun Guo* Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

Tables and Figures

Table S1. Optimization of reaction conditions for BN hydrogenation overNi/SiC.

Entry	Solvent	Conv. (%)	Select. (%)
1	Methanol	57%	77%
2	Ethanol	51%	77%
3	i-Propanol	38%	76%
4	Hexane	44%	39%
5	1,4-Dioxane	11%	69%
6	THF	19%	74%

Reaction conditions: 1 mmol of BN, 20 mL of solvent, 100 mg of catalyst, 2 MPa of H_2 , 120 °C, reaction time was 2 h.

Figure S1. The effect of ammonia addition on the hydrogenation of BN Reaction conditions: 1 mmol of BN, 20 mL of methanol, 0.1-0.4 mL of NH₃•H₂O, 100 mg of catalyst, 2 MPa of H₂, 150°C, reaction time was 1.5 h.

Figure S2. TEM (a) and HRTEM (b) images of Ni/SiC

Figure S3. Comparison of the H-spillover capability of different catalysts by

reducing WO_3 at 30 $^\circ\text{C}$ with a H_2 flow of 10 mL/min

Figure S4. CO₂-TPD profiles of Ni/C, Ni/Al₂O₃ and Ni/TiO₂

Figure S5. TEM images of Ni/SiC after 5 times used

Figure S6. C 1s XPS spectrum of Ni/SiC