Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

3D Interconnected Polymer/Mesoporous Silica Nanoparticle Hybrid Materials

with Hierarchical Macro/Meso-structure for Heavy Metal Adsorption

Jae-Seo Park,^{a,1} Young Sunwoo,^{a,1} Debabrata Chakraborty,^{b,1} Chamila Gunathilake,^c Yanhai Du,^c

and Eun-Bum Cho^{a,b,*}

^aDepartment of Fine Chemistry, Seoul National University of Science and Technology, 232

Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

^bInstitute for Applied Chemistry, Seoul National University of Science and Technology, 232

Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

^cCollege of Aeronautics & Engineering, Aeronautics & Engineering Building, 1400, Lester A

Entry	Table of contents	Page
		No.
Figure S1	Nitrogen adsorption-desorption isotherms of (a) MSN-NH ₂ , (b) NSI-	S2
	304, (c) NSI-314, and (d) NSI-514 samples.	
Figure S2	Nitrogen adsorption-desorption isotherms of (a) MSN-NH ₂ , (b) NSI-	S3
	304, (c) NSI-314, and (d) NSI-514 samples.	
Figure S3	The adsorption of Pb^{2+} , Cd^{2+} , and Hg^{2+} on NSI-514 as a function of	S4
	pH (ranging from 1.0 to 9.0) was characterized by the removal	
	efficiency.	
Figure S4	Recyclability of NIS-514 towards heavy metal ion (Pb, Cd and Hg)	S5
	uptake.	
Figure S5	The chemisorption mechanism of Pb ²⁺ , Cd ²⁺ , and Hg ²⁺ on PEI/MSN-	S6
	nanoomposite silica materials.	

Figure S1. Nitrogen adsorption-desorption isotherms of (a) MSN-NH₂, (b) NSI-304, (c) NSI-314, and (d) NSI-514 samples.

Figure S2. Pore size distribution of (a) MSN-NH₂, (b) NSI-304, (c) NSI-314, and (d) NSI-514 samples.

Figure S3. The adsorption of Pb²⁺, Cd²⁺, and Hg²⁺ on NSI-514 as a function of pH (ranging from 1.0 to 9.0) was characterized by the removal efficiency.

Figure S4. Recyclability of NIS-514 towards heavy metal ion (Pb, Cd and Hg) uptake.

Figure S5. The chemisorption mechanism of Pb^{2+} , Cd^{2+} , and Hg^{2+} on PEI/MSN-nanoomposite silica materials.