Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Sodium-ion-stabilized 2 × 4 tunnel manganese oxide nanorods as

cathodes for high-performance aqueous zinc-ion batteries

Shuling Liu^{*1}; Ruirui Teng¹; Xiangyang Wei¹; Yupei Li¹; Zixiang Zhou¹; Xiaoqiang Shi¹; Jiebing Li²; Jianbo Tong^{*1}

¹College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology,

Xi'an 710021, China

² Shaanxi Applied Physics and Chemistry Research Institute

*Corresponding author.

E-mail address: liushuling@sust.edu.cn

tongjianbo@sust.edu.cn

Table of Content:

- 1. EDX
- 2. ICP
- 3. XRD
- 4. SEM
- 5. Electrochemistry
- 6. BET
- 7. XRD
- 8. Crystal data

Fig. S1 EDX of the $\mathrm{Na}_{0.4}\mathrm{MnO}_2$ and the corresponding elemental content .

ICP-AES	Atomic Percentage (%)	
	Na	Mn
Na _{0.4} MnO ₂	28.57	71.43
Na-birnessite	10.77	89.23

Table S1 Contents of the manganese oxide

Fig. S2 XRD of the $Na_{0.4}MnO_2$ after 550 °C

After annealed at 550 °C , the $Na_{0.4}MnO_2$ powders is converted into Mn_2O_3 and Mn_3O_4 . The $Na_{0.4}MnO_2$ powder was annealed at 550 °C for 2h and XRD patterns are shown in **Fig. S2**.

4. SEM

Fig. S3 SEM of the Na_{0.4}MnO₂

5. Electrochemistry

Fig. S4 Compared with other ZIBs Mn-based electrodes previously reported, the specific capacity (stable capacity) of $Na_{0.4}MnO_2$ is higher at different current densities.

[1] Zhao Yanming, Liao Jinhui. Rubidium-doped Na_{1.25}V₃O₈ Electrochemical properties of nanorods as cathode materials for zinc-ion batteries[J].Journal of South China University of Technology:Natural Science Edition, 2023, 51(3):63-73.)

[2] Guo Pingchun, Han Xing, Jiang Hedong, et al. Research on vanadium-based metal-based organic framework materials as cathode materials for aqueous zinc-ion batteries[J].Acta Ceramic Sinica, 2023, 44(5):920-927.)

[3] Huang Yongfeng, Huang Wenting, Liu Wenbao, et al.Energy storage mechanism and capacity attenuation reasons of Zinc-ion battery cathode material V₂O₅[J].Chem. J. Chinese Universities, 2020, 41(8):7.

[4] Ma Qiuchen, Liu Jun. MnO@C for research on cathode materials for zinc-ion batteries[J].Mining and Metallurgical Engineering, 2021, 41(1):4.

Fig.S5 GCD profiles of the Na-birnessite electrode obtained at 0.2 A g⁻¹.

Fig.S6 Comparison of GCD profiles between Na_{0.4}MnO₂ and Na-birnessite at 0.2 A g⁻¹.

Fig.S7 GCD profiles of the $Na_{0.4}MnO_2$ electrode obtained in aqueous electrolyte (2 M ZnSO₄) at a scan of 0.2 A g⁻¹.

Fig.S8 Cycling performance of the Na_{0.4}MnO₂ at 0.2 A g⁻¹ in aqueous electrolyte (2 M ZnSO₄).

the battery was tested for 450 cycles at 0.2 mA g^{-1} in **Fig S8**. It was found that the capacity of the Na_{0.4}MnO₂ sample gradually decreased from 258 mAh g^{-1} to 114 mAh g^{-1} when without Mn²⁺ was added to the electrolyte, the capacity retention rate is only 44.1%.

Fig S10. GITT curve and the corresponding diffusion coefficients in discharge process of the ZIB

with Na_{0.4}MnO₂

The GITT measurement of Na_{0.4}MnO₂ electrode was conducted at the current density of 0.1 A g⁻¹. The charging time and rest time are 10 min and 30 min, respectively. When discharged to 1.45 V, the diffusion coefficient of H⁺ is 7.52 × 10^{-13} cm² s⁻¹, and when discharged to 1.35 V, the diffusion rate of Zn²⁺ is 6.49× 10^{-15} cm² s⁻¹. As shown in Fig. S10, the voltage (ΔE_{τ}) exhibits a linear behavior with the square root of the titration time ($\tau^{1/2}$). Therefore, the diffusion coefficient can be calculated based on the Equation (S3):

$$D = \frac{4}{\pi} \left(\frac{m_B V_M}{\tau M_B A}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2 \tag{S4}$$

Here, τ is the constant pulse time 30 min, m_B is the mass of the active material, V_M is the molar volume, m_B is the molecular weight, A is the surface area of electrode with electrode, and ΔE_{τ} is the difference of stabilized open-circuit for the corresponding step. Accordingly, in this Na_{0.4}MnO₂ battery, the relationship between diffusion coefficient and $(\Delta E_s/\Delta E_{\tau})^2$ can be described as Eq. S4:

$$\frac{D_{1}}{D_{2}} = \frac{(\frac{\Delta E_{S, 1}}{\Delta E_{\tau, 1}})^{2}}{(\frac{\Delta E_{S, 2}}{(\Delta E_{\tau, 2})})^{2}}$$
(S5)

- Heubner C, Schneider M, Michaelis A. SoC dependent kinetic parameters of insertion electrodes from staircase—GITT [J]. Journal of Electroanalytical Chemistry, 2016, 767: 18-23.
- [2] Deiss E. Spurious chemical diffusion coefficients of Li⁺ in electrode materials evaluated with GITT [J]. Electrochimica Acta, 2005, 50(14): 2927-2932.

6.BET

Fig S11. BET pattern of Na-birnessite sample

Fig. S11 displays the BET results of Na-birnessite. The N_2 adsorption-desorption isothermal curve of Na-birnessite belongs to type II, which is a material with large pores or no pores.

Fig .S12 the ex-situ XRD at different charge-discharge stages

The ex-situ XRD plots of the material in different charge/discharge states are shown in Fig.S12. These nanosheets are identified as $ZnSO_4 \cdot 3Zn(OH)_2 \cdot 5H_2O$ (BZSP), and its formation is associated with the increase in local pH induced by H⁺ insertion. At 1.7 V, the flakes gradually disappear, which is attributed to the conversion of BZSP to ZnMn₃O₇·3H₂O as indicated by the XRD analysis in Fig. S12. In addition, MnOOH and Zn_xMnO₂ phases are also detected from the fully discharged Na_{0.4}MnO₂ anode(Fig. S12), During the first discharging stage at 0.9V, the intercalation of Zn²⁺ and H⁺ occurs in Na_{0.4}MnO₂ to form layered Zn_xMnO₂, MnOOH and the byproduct BZSP.

- Lee B, Seo H R, Lee H R, et al. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries [J]. Chemsuschem, 2016.
- [2] Li Y, Li X, Duan H, et al. Aerogel-structured MnO₂ cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries [J]. Chemical Engineering Journal, 2022, 441: 136008-.
- [3] Sun W, Wang F, Hou S, et al. Zn/MnO₂ battery chemistry with H⁺ and Zn²⁺ coinsertion [J].
 Journal of the American Chemical Society, 2017, 139(29): 9775-9778.

Parameter	
Chemical formula	Na _{0.4} MnO ₂
Space group	C2/m
Step scan increment (°)	0.03
2θ range (°)	5-80
a (Å)	14.28
b (Å)	2.84
c (Å)	23.84

Table 2. Crystal data for $Na_{0.4}MnO_2$.