Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Regulating the particle sizes of NaA molecular sieves toward enhanced heavy metal adsorption

WenLi Cui^{a,#}, Ke Tang^{a,#}, Yunqiang Chen^b, Zhou Chen^a, Yihong Lan^b, YuBin Hong^{b,*},

WeiGuang Lan^{a,b,*}

[a] Ms. W.L. Cui, Mr. K. Tang, Dr. Z. Chen, Prof. W.G. Lan

Xiamen University Center for Membrane Application and Advancement, College of

Materials, Xiamen University, Xiamen 361005, Fujian, China.

[b] Dr. Y.H. Lan, Mr. Y.Q. Chen, Mr. Y.B. Hong, Prof. W.G. Lan

Suntar Membrane Technology (Xiamen) Co., Ltd., Xiamen 361022, Fujian, China.

These authors contributed equally to this work.

Corresponding authors: Mr. Y.B. Hong (hongyb@suntar.com); Prof. W.G. Lan (wglan@xmu.edu.cn)

Fig. S1 XPS full spectrum of NaA molecular sieve before and after adsorption.

Fig. S2 XRD patterns before and after adsorption of heavy metals ions..

Fig. S3 FTIR spectra before and after adsorption of heavy metals ions

Number	Na ₂ O/Al ₂ O ₃	(TMA) ₂ O/Al ₂ O ₃	Synthesis	Synthesis	Ageing
			time (h)	temperature	time
				(°C)	(d)
A1	0.15	6	24	80	1
A2	0.3	6	24	80	1
A3	0.45	6	24	80	1
A4	0.6	6	24	80	1
A5	0.75	6	24	80	1
A6	0.3	4	24	80	1
A7	0.3	8	24	80	1
A8	0.3	10	24	80	1

Table S1. NaA molecular sieve synthesis conditions

Heavy	Temperature(q _{max} (mg/g)	K _L	R ²
metal	°C)			
	25	357.1428	0.0223	0.9873
Cu	35	381.6793	0.0239	0.9993
Cu	45	406.50406	0.0241	0.9970
	55	429.1845	0.0270	0.9696
	25	606.0606	0.8638	0.9935
Dh	35	628.9308	1.1276	0.9972
FU	45	645.1612	1.2109	0.9974
	55	666.6666	1.3513	0.9978

Table S2. Langmuir adsorption isothermal parameters of Pb(II) on NaA molecular

 sieves at different temperatures

Heavy metal	Temperature(℃)	1/n	K _F	R ²
	25	0.5498	0.0212	0.9975
<u>C</u> -a	35	0.5607	0.0226	0.9795
Cu	45	0.5633	0.0240	0.9812
	55	0.5722	0.0260	0.9263
	25	0.1364	0.3601	0.9921
Dh	35	0.13733	0.3810	0.9615
PD	45	0.1387	0.3932	0.9429
	55	0.1396	0.4087	0.9319

Table S3. Freundlich adsorption isothermal parameters of Pb(II) on NaA molecular

 sieves at different temperatures

Heavy	Initial	Qe, exp	Qe, cal	K 1	R ²
metal	concentration	(mg/g)	(mg/g)		
	(mg/L)				
	25	250			
Dh	50	450	181.8196	0.03591	0.9943
PO	75	540	195.5079	0.03999	0.9812
	100	600	101.2548	0.03262	0.8817
	25	95	35.2611	0.0255	0.7882
Cu	50	153	42.3213	0.0203	0.9063
	75	193	42.4242	0.0247	0.8180
	100	230	36.8421	0.0263	0.9707

 Table S4. Parameters of quasi-primary kinetic modelling of NaA molecular sieve

 adsorption at different metal ion concentrations

Heavy	Initial	Qe, exp	Qe, cal	K ₁	R ²
metal	concentration	(mg/g)	(mg/g)		
	(mg/L)				
	25	250			
D1	50	450	467.2897	0.00041	0.9995
PO	75	540	555.5556	0.00045	0.9998
	100	600	609.7561	0.00071	0.9999
	25	95	99.8004	0.0012	0.9981
Cu	50	153	157.9778	0.0014	0.9987
	75	193	195.3125	0.0015	0.9997
	100	230	233.6449	0.0017	0.9999

 Table S5. Parameters of quasi-secondary kinetic modelling of NaA molecular sieve

 adsorption at different heavy metal ion concentrations

Heavy metal	T (K)	ΔH (kJ/mol)	∆S (J/mol·K)	∆G (kJ/mol)
	298			-2.7112
Cu	308	6.8846	32.1798	-3.0142
Cu 318	318			-3.3495
	328			-3.6765
	298	6.2536	43.4836	-6.7095
Dh	308			-7.1390
ΓU	318			-7.5516
	328			-8.0274

Table S6. Thermodynamic parameters of Cu and Pb adsorption on NaA molecular

 sieves

	Heavy metal ion	Heavy metal ion
	concentration before	concentration after
	adsorption (mg/L)	adsorption(mg/L)
Cu	100	77
Pb	100	40

Table S7 Changes in heavy metal ion concentration before and after adsorption

We observed a significant reduction in metal ion concentration after the adsorption process, as shown in Table S7. This reduction indicates the effective adsorption capability of NaA molecular sieves. Specific adsorption quantities can be calculated according to Eq. 1 in section 2.3 of the manuscript.

Absorbent	Adsorbates	Adsorption capacity	Reference
CS-ZIF-8 composite beads	Pb (II) Cu(II)	165.7 mg/g 131.4mg/g	1
DTC-AC	Pb (II) Cu(II)	203.36 mg/g 53.13 mg/g	2
3DP of zeolite-Y	Cu(II) Pb (II)	7.8 mg/g 8.3 mg/g	3
magnetic hollow MnFe ₂ O ₄ nanospheres	Pb ²⁺	291.07mg/g	4
SBA-15 molecular sieves	Pb ²⁺	131mg/g	5
nano-zeolites	Cu(II) Pb (II)	431 mg/g 337.8mg/g	6
NaA molecular sieve	Cu(II) Pb (II)	230 mg/g 600 mg/g	This work

Table S8 Comparison of the performance of NaA molecular sieve and other adsorbents

Samples	$S_{BET}(m^2/g)$	V_{BJH} (cm ³ /g)	$D_{avg}(nm)$
NaA molecular	36.9	0.20	21.9
sieve			
NaA-Pb	21.8	0.15	25.4
NaA-Cu	31.7	0.17	26.8

Table S9 Specific surface area and pore structure parameters of NaA molecular sieves

 before and after adsorption of heavy metal ions

References:

1. C. Wang, Q. Sun, L. Zhang, T. Su and Y. Yang, *Journal of Environmental Chemical Engineering*, 2022, **10**.

2. H.-Y. Niu, X. Li and J. Li, New Journal of Chemistry, 2022, 46, 5234-5245.

3. A. Khalil, R. Hashaikeh and N. Hilal, *Journal of Water Process Engineering*, 2021, **42**.

4. C. Jin, G. Teng, Y. Gu, H. Cheng, S. Fu, C. Zhang and W. Ma, New Journal of Chemistry, 2019, 43, 5879-5889.

5. V. Hernández-Morales, R. Nava, Y. J. Acosta-Silva, S. A. Macías-Sánchez, J. J. Pérez-Bueno and B. Pawelec, *Microporous and Mesoporous Materials*, 2012, **160**, 133-142.

6. H. Luo, W. W. Law, Y. Wu, W. Zhu and E.-H. Yang, *Microporous and Mesoporous Materials*, 2018, **272**, 8-15.