Content

General information 2
General procedure for optimization (Procedure A) (see Table S1 to S5) 3
General procedure for synthesis of glycosyl aryl sulfone (Procedure B) 6
General procedure for protected group removal (Procedure C) 6
Preliminary mechanistic studies 6
Library of sodium glycosyl sulfinates 10
Library of diaryliodonium salts 17
DFT calculations 20
References 32
Characterization data 35
NMR spectra 49

General information

Unless otherwise stated, all reactions were set up under inert atmosphere $\left(\mathrm{N}_{2}\right)$ utilizing glassware that were oven dried and cooled under nitrogen atmosphere. Silica Gel Flash Column Chromatography was performed on silica gel (particle size 300-400 mesh). Starting materials were purchased directly from commercial suppliers (Sigma Aldrich, Energy Chemical, Bidepharm, Tansoole) and used without further purifications unless otherwise stated. All solvents were dried according to standard procedures or brought from commercial suppliers. Reactions were monitored using thin-layer chromatography (TLC) with F254 indicator. Visualization of the developed plates was performed under UV light (254 $\mathrm{nm})$ or $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}\left(10 \% \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{v} / \mathrm{v}\right)$.
${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, ${ }^{13} \mathrm{C}$ NMR and 2D-NMR spectra were recorded using Bruker AVIII 400 and JEOL JNM-ECA600 spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} \delta 77.16 \mathrm{ppm}\right),{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6} \delta 2.50 \mathrm{ppm}$), ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6} \delta 39.50 \mathrm{ppm}$), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} \delta 4.87 \mathrm{ppm}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} \delta 49.00 \mathrm{ppm}\right)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were recorded using Nicolet iS50 spectrometer. HRMS data was recorded using HRMS Exactive Plus instrument. Melting point was measured using SGW X-4A instrument. Optical rotation was measured using MCP 150 instrument.

General procedure for optimization (Procedure A) (see Table S1 to S5)

In a glove box filled with nitrogen, to an oven-dried 5 mL tube equipped with a stirring bar were added sodium glycosyl sulfinate $\mathbf{5 a}$ ($0.03 \mathrm{mmol}, 1.0$ equiv.), diaryliodonium salt $\mathbf{6 a}$ ($0.033 \mathrm{mmol}, 1.1$ equiv.) and solvent $(0.3 \mathrm{~mL})$. The tube was sealed with a Teflon screw cap and the mixture was stirred at an indicated temperature. Upon completion, the yield was determined by ${ }^{19}$ F NMR spectroscopy with PhOCF_{3} as an internal standard.

Table S1: Solvent screening

${ }^{a}$ Reaction conditions: $\mathbf{5 a}\left(0.03 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathbf{6 a}$ (1.1 equiv.), solvent $(0.3 \mathrm{~mL})$ under N_{2} atmosphere, $90^{\circ} \mathrm{C}$ for 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

Table S2: Investigation of temperature

Entry	$\mathrm{T} /{ }^{\circ} \mathrm{C}$	${\text { Yield of } 7 \mathbf{a}^{a}}^{2}$
1	30	58%
2	60	95%
3	90	92%
4	130	54%

${ }^{a}$ Reaction conditions: $5 \mathbf{5}$ ($0.03 \mathrm{mmol}, 1.0$ equiv.), 6a (1.1 equiv.), DMSO (0.3 mL) under N_{2} atmosphere, 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

Table S3: Effect of counter anion

${ }^{a}$ Reaction conditions: $5 \mathbf{5 a}$ ($0.03 \mathrm{mmol}, 1.0$ equiv.), 6a (1.1 equiv.), DMSO (0.3 mL) under N_{2} atmosphere, $60^{\circ} \mathrm{C}$ for 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

Table S4: Investigation of reaction time

Entry	t / h	${\text { Yield of } \mathbf{7 a}^{a}}^{2}$
1	6	44%
2	8	90%
3	10	95%
4	12	94%
5	14	94%

${ }^{a}$ Reaction conditions: $5 \mathbf{5 a}\left(0.03 \mathrm{mmol}, 1.0\right.$ equiv.), 6a (1.1 equiv.), DMSO $(0.3 \mathrm{~mL})$ under N_{2} atmosphere, $60^{\circ} \mathrm{C}$. The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

Table S5: Investigation of reaction atmosphere

${ }^{a}$ Reaction conditions: 5a ($0.03 \mathrm{mmol}, 1.0$ equiv.), 6a (1.1 equiv.), DMSO $(0.3 \mathrm{~mL}), 60^{\circ} \mathrm{C}$ for 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

General procedure for synthesis of glycosyl aryl sulfone (Procedure B)

In a glove box filled with nitrogen, to an oven-dried 5 mL tube equipped with a stirring bar were added sodium glycosyl sulfinate 5 ($0.10 \mathrm{mmol}, 1.0$ equiv.), diaryliodonium salt $\mathbf{6}$ ($0.11 \mathrm{mmol}, 1.1$ equiv.) and DMSO (1 mL). The tube was sealed with a Teflon screw cap and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 h . Upon completion, the crude mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL). The organic phase was separated and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure using a rotary evaporator. The resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to give the targeted product.

Note: For benzylated sodium sulfinate as the substrate and $\mathrm{H}_{2} \mathrm{O}$ as solvent, the reaction temperature is $120^{\circ} \mathrm{C}$ and the reaction time is 10 hours. For the unprotected sodium sulfinate as the substrate and $\mathrm{CH}_{3} \mathrm{CN}$ as solvent, the reaction temperature is $90^{\circ} \mathrm{C}$ and the reaction time is 24 hours.

General procedure for protected group removal (Procedure C)

Under $\mathrm{N}_{2}, 7$ (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, and mesitylene (12.0 equiv.) were successively added into an oven-dried glassware. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and BCl_{3} (8.0 equiv., $1.0 \mathrm{M} \mathrm{in}_{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text {) }}$) was added dropwise over 5 min . The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min until completion. The reaction was quenched by dropwise addition of $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and allowed to stir for an additional 20 min . The resulting mixture was concentrated and directly purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 10: 1\right)$ to afford $\mathbf{8}$.

Preliminary mechanistic studies

Procedure for radical trapping experiments (see Table S6, Figure S1-2)

In a glove box filled with nitrogen, to an oven-dried 5 mL tube equipped with a stirring bar were added sodium glycosyl sulfinate 5 ($0.10 \mathrm{mmol}, 1.0$ equiv.), diaryliodonium salt $\mathbf{6}$ ($0.11 \mathrm{mmol}, 1.1$ equiv.), radical scavenger and DMSO (1 mL). The tube was sealed with a Teflon screw cap and the solution was stirred at $60^{\circ} \mathrm{C}$ for 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} ($10 \mu \mathrm{~L}, 0.0756 \mathrm{mmol}$) as an internal standard.

Table S6: Radical trapping experiment

Entry	Additive	Yield of 7a ${ }^{\text {a }}$
1	none	99\%
2	TEMPO (1.0 equiv.)	76\%
3	1,1-diphenylethylene (1.0 equiv.)	100\%

${ }^{a}$ The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with PhOCF_{3} as an internal standard.

Figure S1. ${ }^{19}$ F NMR spectra for the crude mixture with 1.0 equiv. TEMPO

Figure S2. ${ }^{19}$ F NMR spectra for the crude mixture with 1.0 equiv. 1,1-diphenylethylene

Reaction with the additive furan (see Figure S3)

In a glove box filled with nitrogen, to an oven-dried 5 mL tube equipped with a stir bar were added sodium glycosyl sulfinate $\mathbf{5 a}$ ($0.10 \mathrm{mmol}, 1.0$ equiv.), diaryliodonium salt $\mathbf{6 a}(0.11 \mathrm{mmol}, 1.1$ equiv.), furan ($0.1 \mathrm{mmol}, 1.0$ equiv.) and DMSO (1 mL). The tube was sealed with a Teflon screw cap and the solution was stirred at $60^{\circ} \mathrm{C}$ for 10 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy with $\mathrm{PhOCF}_{3}(10 \mu \mathrm{~L}, 0.0756 \mathrm{mmol})$ as an internal standard.

Figure S3. ${ }^{19}$ F NMR spectra for the crude mixture with 1.0 equiv. furan

Library of sodium glycosyl sulfinates

5a

ŌBn
OBn
5 e

5b

$5 g$

5d

Figure S4. Library of sodium glycosyl sulfinates

General procedure for preparation of 5a-b, 5d-f (Procedure D)

Step 1: synthesis of glycosyl bromide

Sugar substrate (1.0 equiv.) and sodium acetate (1.1 equiv.) were added to acetic anhydride (0.6 $\mathrm{M})$. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ and stirred for 5 hours. Then the mixture was poured into cold water. The water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were washed with saturated NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was obtained and used directly without further purification.

Crude acetylated glycoside was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{HBr}(30 \%$ acetic acid solution, 4.5 equiv.) was slowly added and the resulting mixture was stirred at room temperature for 12 hours. Upon completion, the mixture was poured into ice water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were washed with saturated NaHCO_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under rotary evaporator. The residue was obtained and used directly without further purification.

Step 2: Reaction with 2-thiopyrimidine

Under nitrogen atmosphere, 2-thiopyrimidine (1.5 equiv.), potassium carbonate (8.0 equiv.) and DMF (0.3 M) were added to a reaction flask and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. Afterwards, a DMF solution of acetylated glycosyl bromide (1.0 equiv.) was added to a reaction flask and stirred for another 12 hours. Upon completion, the reaction was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. And the residue was purified by silica gel chromatography to give the desired thioglycoside.

Step 3: Benzylation

Sodium methoxide (0.2 equiv.) and acetylated thioglycoside (1.0 equiv.) (Obtained from step 2) were dissolved in methanol $(0.25 \mathrm{M})$, and the mixture was stirred at room temperature for 2 hours. Upon completion, the mixture was concentrated under reduced pressure and further dried under vacuum. Then, the residue was dissolved in DMF (0.25 M) at $0{ }^{\circ} \mathrm{C}$, and NaH (8.0 equiv.) was added in batches. Afterwards, benzyl bromide (8.0 equiv.) was added dropwise at same temperature, and the reaction was allowed to warm up to room temperature $\left(25^{\circ} \mathrm{C}\right)$ and stirred for 12 hours. The reaction was then quenched by water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were washed with water (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the benzylated thioglycoside.

Step 4: Oxidation

Benzylated thioglycoside (1.0 equiv.) and a catalytic amount of RuCl_{3} (0.1 equiv.) were dissolved in a mixed solvent $(0.1 \mathrm{M})\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN}=3: 2: 2\right)$ at $0{ }^{\circ} \mathrm{C} . \mathrm{NaIO}_{4}$ (4.5 equiv.) was added in batches and the mixture was allowed to warm up to $25^{\circ} \mathrm{C}$, and stirred for 2 hours. Subsequently, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography to give the sulfone product.

Step 5: Removal of pyrimidine moiety

Under nitrogen atmosphere, NaH (3.0 equiv.) was dissolved in THF (0.5 M) at $0^{\circ} \mathrm{C}$, and BnSH (0.3 equiv.) was added dropwise. After that, a THF solution of sulfone product (Obtained from step 4) was added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 hours and then warmed up to room temperature for several hours until completion of sugar substrate. Afterwards, the mixture was concentrated under reduced pressure. The resulting residue was washed with petroleum ether and ethyl acetate, and dried under vacuum to give the sodium glycosyl sulfinate.

Step 6: Oxidation

m CPBA (3.0 equiv.) in a round bottom flask was dried under vacuum. To the flask was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ solution of acetylated thioglycoside (1.0 equiv.) (Obtained from step 2) at $0{ }^{\circ} \mathrm{C}$. The temperature was warmed to room temperature. After stirring for 4 hours, the reaction mixture was treated with $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ and saturated aqueous NaHCO_{3} at room temperature. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography eluent: hexane/EtOAc $=1: 2$ to give the sulfone product.

Step 7: Removal of pyrimidine moiety

Under nitrogen atmosphere, NaH (3.0 equiv.) was dissolved in THF $(0.5 \mathrm{M})$ at $0^{\circ} \mathrm{C}$, and BnSH (1.0 equiv.) was added dropwise. After that, a THF solution of sulfone product (1.0 equiv.) (Obtained from step 3) was added and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 hours and then warmed up to room temperature for 1 hours until completion of sugar substrate. Afterwards, the mixture was concentrated under reduced pressure. The resulting residue was washed with petroleum ether and ethyl acetate, and dried under vacuum to give the sodium glycosyl sulfinate.

Compounds $\mathbf{5 c}, \mathbf{g}$-h were synthesized according to the literature. ${ }^{1}$

Compound 4a

4a
4a was prepared following General Procedure D using 2,3,4,6-tetra- O-acetyl-alpha-Dglucopyranosyl bromide ($30 \mathrm{mmol}, 12.24 \mathrm{~g}$) as starting material. Petroleum ether and ethyl acetate (2:1) were used as eluents to separate on silica gel by column chromatography to obtain the title product as a white solid ($11.6 \mathrm{~g}, 58 \%$ total yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.14(\mathrm{~m}, 20 \mathrm{H}), 7.10(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.76$ (m, 4H), 4.57 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.48(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 164.92,158.21,138.16,138.13,137.77,137.65,128.63,128.60$, $128.45,128.34,128.12,128.09,128.07,127.94,127.81,127.78,127.72,123.36,88.81,86.38,80.47$, $77.73,77.41,76.05,75.30,75.06,73.40,68.68 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2954, 2922, 2852, 2166, 2049, 1978, 1735, 1566, 1496, 1455, 1377, 1259, 1091, 1016, 798, 757, 697, 569.

$$
[\alpha]_{\mathrm{D}}{ }^{25}=+11.8\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right) .
$$

HRMS (ESI-TOF): calculated for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 689.2292, found: 689.2285.
m. p.: $126.5-126.9^{\circ} \mathrm{C}$.

Compound 5a

5a
5a was prepared following General Procedure D from $4 \mathbf{a}(17.4 \mathrm{mmol}, 11.6 \mathrm{~g})$ as a white solid ($10.5 \mathrm{~g}, 99 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right) \delta 7.34-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.94(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.09$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{q}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.63-3.48(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2648, 2286, 2185, 2161, 2049, 2026, 1979, 1028, 1067, 695, 529, 414.
$[\alpha] \mathbf{D}^{25}=-105.4(\mathrm{c}=0.10, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NaO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 611.2074$, found: 611.2064.
m. p.: 299.0-300.0 ${ }^{\circ} \mathrm{C}$.

Compound 5b

5b was prepared following General Procedure D using 2,3,4,6-tetra- O-acetyl-alpha-Dglucopyranosyl bromide ($2.70 \mathrm{mmol}, 1.11 \mathrm{~g}$) as starting material. as a white solid $(979 \mathrm{mg}, 86 \%$ total yield).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d6) $\delta 5.20-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=$ $12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=12.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.84(\mathrm{~m}$, 12H) ppm.
${ }^{13}$ C NMR (101 MHz, DMSO-d6) δ 170.19, 169.71, 169.28, 169.11, $91.59,74.60,74.35,68.11$, 67.55, 62.15, 20.83, 20.58, 20.37, 20.37 ppm.

IR (thin film, $\mathbf{c m}^{-1}$): 3321, 1644, 1559, 1410, 1241, 1014, 964, 467.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}=+19.1\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Na}_{2} \mathrm{O}_{11} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 441.0438$, found: 441.0430 .

Compound 4d

4d

4d was prepared was prepared following General Procedure D from D-Galactose ($20 \mathrm{mmol}, 3.60$ g) as a solid ($3.0 \mathrm{~g}, 24 \%$ total yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.62(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 20 \mathrm{H}), 7.11(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.76-4.52(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.93,158.07,138.47,137.98,137.87,137.78,128.60,128.51$, $128.35,128.19,128.05,127.97,127.93,127.70,127.68,127.54,123.22,89.47,83.82,78.69,75.05$, 74.64, 74.52, 73.54, 73.08, 72.69, 68.31 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 2954, 2922, 2852, 2050, 1980, 1566, 1454, 1677, 1259, 1094, 1016, 796, 757, 696, 562.
$[\alpha] \mathrm{D}^{25}=+14.7\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 689.2292, found: 689.2283.
m.p.: $158.5-162.2^{\circ} \mathrm{C}$.

Compound 5d

5d
5d was prepared following General Procedure D as a white solid ($2.3 \mathrm{~g}, 79 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 14 \mathrm{H}), 4.94-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.81$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}$, $J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=10.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl 3) $\delta 138.71,138.38$, 137.61, 137.38, 129.29, 128.69, 128.56, 128.50, $128.44,128.35,128.09,127.84,127.78,127.62,93.37,84.40,77.83,76.53,75.34,73.91,73.20,72.89$, 72.11, 68.63 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3379, 2323, 2199, 2050, 2036, 1980, 1641, 1496, 1453, 1365, 1075, 733, 697, 441.
$[\alpha] \mathrm{D}^{30}=-225.96(\mathrm{c}=0.16, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NaO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 611.2074$, found: 611.2059.
m. p.: $221.2-222.1^{\circ} \mathrm{C}$.

Compound 4 e

4 e
$4 \mathbf{e}$ was prepared following General Procedure D from D-Arabinose ($20 \mathrm{mmol}, 3.0 \mathrm{~g}$) as a white solid ($1.9 \mathrm{~g}, 18 \%$ total yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 14 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H})$, $5.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 4 \mathrm{H}), 4.29(\mathrm{dd}, J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{dd}, J=12.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.32,158.26,137.94,137.93,137.84,128.56,128.26,128.01$, $127.91,127.85,127.60,123.37,89.20,80.49,74.62,73.98,71.98,71.64,71.22,67.20 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2954, 2922, 2851, 2323, 2284, 2161, 2049, 2020, 1979, 1565, 1496, 1454, $1378,1335,1259,1213,1130,1095,1017,797,734,697,543,457$.
$[\alpha] \mathrm{D}^{25}=-25.0\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 569.1717$, found: 569.1713.
m.p.: $166.9-167.6^{\circ} \mathrm{C}$.

Note: ${ }^{1} \mathrm{H}$ NMR data of the precursor for preparation of $\mathbf{4 e}$ is in agreement with that reported in literature. ${ }^{2} \mathbf{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 15 \mathrm{H}), 6.99(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.52(\mathrm{~m}, 6 \mathrm{H}), 4.23(\mathrm{dd}, J=11.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96$ $(\mathrm{m}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 5e

5e was prepared following General Procedure D as a white solid ($1.7 \mathrm{~g}, 99 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 7.43-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.74-4.45(\mathrm{~m}, 7 \mathrm{H}), 4.11-3.96(\mathrm{~m}$, $2 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, DMSO-d $\mathbf{6}$) δ 139.06, 138.91, 138.77, 128.19, 128.14, 128.06, 127.64, $127.59,127.51,127.39,127.33,127.22,97.64,77.71,74.56,72.18,72.11,70.56,69.95,63.97 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3354, 2162, 2115, 1637, 1453, 1087, 1016, 459.
$[\alpha] D^{30}=-346.4(\mathrm{c}=0.13, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 491.1499, found: 491.1493.
m. p.: $290.5-291.2^{\circ} \mathrm{C}$.

Compound $4 f$

4 f
4f was prepared following General Procedure D from D-xylose ($20 \mathrm{mmol}, 3.0 \mathrm{~g}$) as a white solid ($1.1 \mathrm{~g}, 12 \%$ total yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.14(\mathrm{~m}, 16 \mathrm{H}), 5.19(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00-4.75(\mathrm{~m}, 4 \mathrm{H}), 4.73-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=11.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.94,158.42,138.19,137.79,137.66,128.67,128.56,128.29$, $128.18,128.04,127.96,127.92,127.70,123.58,89.05,84.96,77.42,76.68,75.68,74.97,73.45,68.43$ ppm.

IR (thin film, $\mathbf{c m}^{-1}$): 2954, 2922, 2851, 2323, 2165, 2112, 2049, 1980, 1565, 1496, 1455, 1377, $1339,1259,1212,1016,799,756,697,606,562,458$.
$[\alpha]{ }^{25}=+19.4\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 569.1717$, found: 569.1710.
m. p.: $180.9-181.5^{\circ} \mathrm{C}$.

Compound 5 f

$5 f$
5f was prepared following General Procedure D as white solid ($1.2 \mathrm{~g}, 100 \%$ yield).
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6): $\delta 7.39-7.23(\mathrm{~m}, 15 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.71$ $(\mathrm{m}, 2 \mathrm{H}), 4.65-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, DMSO-d6) $\delta 139.20,138.97$, 138.56, 128.28, 128.18, 127.99, 127.84, $127.68,127.56,127.53,127.36,127.14,88.17,84.89,79.86,77.56,74.52,73.62,71.70,66.55 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3334, 2946, 2834, 2049, 1654, 1409, 1110, 1017, 533.
$[\alpha]_{\mathrm{D}}{ }^{30}=-458.2(\mathrm{c}=0.20, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 491.1499$, found: 491.1494.
m. p.: $217.3-218.1^{\circ} \mathrm{C}$.

Library of diaryliodonium salts

6a

6b

6 C

6d

$6 e$

$6 f$

$6 g$

6h

ŌTf

Figure S5. Library of diaryliodonium salts

The known diaryliodonium salts employed in this project were synthesized according to the reported procedures. In detail, compound 6a-e, 6-II-1, 6-IV were synthesized according to the literature ${ }^{3}$. Compound $\mathbf{6 g}$ was synthesized according to the literature ${ }^{4}$. Compound $\mathbf{6 f}$ was purchased commercially. Compound $\mathbf{6 i}, \mathbf{6 - I}, \mathbf{6 - I I}-\mathbf{3}, \mathbf{6}-\mathbf{I I}-5$ were synthesized according to the literature ${ }^{5}$. Compound 6-II-2, 6-II-6, 6-II-7 were synthesized according to the literature ${ }^{6}$; Compound $\mathbf{6 - I I}-\mathbf{4}$ was synthesized according to the literature ${ }^{7}$.

Procedure for preparation of diaryliodonium salt 6-II-3:

(3S)-3-[4-[(2-chloro-5-iodophenyl) methyl] phenoxy] tetrahydrofuran ($2.0 \mathrm{mmol}, 1.0$ equiv.), anisole ($2.2 \mathrm{mmol}, 1.1$ equiv.), and m - CPBA (2.2 mmol , 1.1 equiv.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$, and TfOH ($3.2 \mathrm{mmol}, 1.6$ equiv.) was added dropwise. The mixture was allowed to warm up
to room temperature and stirred for several hours until completion. Then the solvent was removed and the resulting residue was suspended in ether. The precipitation was filtered, washed with ether and dried under vacuum to give 6-II-3 ($524 \mathrm{mg}, 79 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$) $\delta 8.21-8.10(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.91-3.69$ (m, 7H), 2.24-2.15 (m, 1H), 1.95-1.88 (m, 1H) ppm.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta-77.74 \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 162.03,155.77,142.58,137.17,136.96,136.94,134.07,132.33$, $130.23,129.78,120.68(\mathrm{q}, J=323.2 \mathrm{~Hz}), 117.49,115.31,114.96,105.64,76.97,72.23,66.38,55.72$, 37.36, 32.41 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3327, 2943, 2832, 2285, 2164, 2064, 2049, 1979, 1654, 1448, 1413, 1111, 1021, 603.

HRMS (ESI-TOF): calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClIO}_{3}{ }^{+}\left[\mathrm{M}-\mathrm{OTf}^{-}\right]^{+}: 521.0375$, found: 521.0372.
m.p.: $214.5-215.1^{\circ} \mathrm{C}$

Procedure for preparation of diaryliodonium salt 6-II-4:

(4-Methoxyphenyl)- $\lambda 3$-iodanedyl diacetate $(2.2 \mathrm{mmol}, 1.1$ equiv.) was dissolved in hexafluoroisopropanol $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Gemfibrozil ($2.0 \mathrm{mmol}, 1.0$ equiv.) was added to the solution and stirred for 5 minutes. Then, TMSOTf ($2.2 \mathrm{mmol}, 1.1$ equiv.) was added and stirred for 5 minutes at same temperature. After that, the reaction was allowed to warm up to room temperature and stirred for 4 hours. Then the solvent was removed and the resulting residue was suspended in ether. The precipitation was filtered, washed with ether and dried under vacuum to give 6-II-4 ($500 \mathrm{mg}, 41 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 12.13(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.01(\mathrm{~m}$, 3 H), $3.98(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H})$ ppm.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta-77.75 \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 178.63,161.75,159.69,140.13,138.02,136.65,127.23,120.68$ $(\mathrm{q}, ~ J=324.2 \mathrm{~Hz}), 117.39,113.74,109.87,104.96,68.26,55.66,40.96,36.28,24.90,24.79,24.45$, 15.13 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3326, 2944, 2832, 2323, 2050, 1980, 1654, 1448, 1412, 1258, 1112, 1020, 584.

HRMS (ESI-TOF): calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{IO}_{4}{ }^{+}\left[\mathrm{M}-\mathrm{OTf}^{-}\right]^{+}: 483.1027$, found: 483.1022.
m.p.: $148.6-148.9^{\circ} \mathrm{C}$

Procedure for preparation of diaryliodonium salt 6-III:

Methyl 4-iodobenzoate ($2.0 \mathrm{mmol}, 1.0$ equiv.) and m-CPBA ($2.4 \mathrm{mmol}, 1.2$ equiv.) were dissolved in acetonitrile (3 mL). Then, triflic acid ($2.0 \mathrm{mmol}, 1.0$ equiv.) was added dropwise at room temperature. The reaction was allowed to warm up to $55^{\circ} \mathrm{C}$ and stirred for 1 hour. Afterwards, $1,3,5-$ trimethoxybenzene ($2.0 \mathrm{mmol}, 1.0$ equiv.) was added and stirred for 20 minutes. Upon completion, the mixture was concentrated with rotary evaporator. And the residue was suspended in ether and stirred for 10 mins . The precipitation was filtered and dried under vacuum to give the product 6-III as a solid ($284 \mathrm{mg}, 29 \%$).
${ }^{1}{ }^{\mathbf{H}}$ NMR (400 MHz, DMSO-d \mathbf{d}) $\delta 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta-77.75 \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 164.95,163.14,159.86,134.97,132.57,131.86,121.97,120.50$ ($\mathrm{q}, J=324.2 \mathrm{~Hz}$), $95.48,94.67,64.99,58.58,52.76 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3329, 2944, 2832, 2323, 2167, 2050, 1979, 1654, 1448, 1411, 1278, 1109, 1020, 579.

HRMS (ESI-TOF): calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{I}_{2} \mathrm{O}_{10} \mathrm{~S}^{+}\left[\mathrm{M}-\mathrm{OTf}^{-}\right]^{+}: 838.9126$, found: 839.9105 .
m.p.: $220.7-221.7^{\circ} \mathrm{C}$

DFT calculations

Geometry optimizations were performed by Gaussian 16 package 8 at the B3LYP-D3(BJ)/Def2SVP level of theory ${ }^{9-13}$. Solvation effects of dimethyl sulfoxide (DMSO) were included using the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM) with a standard state of $1 \mathrm{M}^{14}$. Energy minima and transition states were verified through vibrational analysis. Frequency calculations were performed at the same theorical level as for geometry optimizations to verify the stationary points as either minima or first-order saddle points on the potential energy surface, as well as to obtain thermal Gibbs free energy corrections at 298 K . Intrinsic reaction coordinate (IRC) computations were used to ensure that each transition state connected the correct two minima.

Highly accurate electronic energies were computed by ORCA 5.0.4 package ${ }^{15-18}$ at the RIω B97M-V/Def2-QZVPP level of theory ${ }^{19,20}$. Specifically, oxygen atoms in the system were treated with the ma-Def2-QZVPP basis set ${ }^{21}$. Auxiliary basis sets for the RI-J approximation were generated automatically by ORCA ${ }^{22}$. Solvation effects were included using the solvation model based on density (SMD) with a standard state of $1 \mathrm{M}^{23}$.

Minenkov's quasiharmonic correction ${ }^{24}$ and zero-point vibrational energy scale factor for the B3LYP/Def2-SVP level of theory (1.0044) ${ }^{254}$ were applied by using Shermo 2.4 package ${ }^{26}$. Hirshfeld atomic charges ${ }^{27}$ and Mayer bond orders ${ }^{28}$ were computed by Multiwfn 3.8(dev) package ${ }^{29}$. Optimized structures were illustrated using CYLview ${ }^{30}$.

Cartesian Coordinates and Gibbs Free Energies of Optimized Structures:

DMSO

-553.1753003 Hartree

S	0.45060600	-0.00391600	0.39320600
O	-0.67593400	-0.01025000	1.41798900
C	0.08022300	1.36960800	-0.75296200
H	0.18081200	2.29429700	-0.16906400
H	0.79700300	1.36598000	-1.58644800
H	-0.95342600	1.25461600	-1.10970800
C	0.08373400	-1.36738400	-0.76602200
H	-0.95021000	-1.25164400	-1.12167100
H	0.80049500	-1.35396600	-1.59942400
H	0.18669800	-2.29734200	-0.19097300

5c
-1160.1346440 Hartree

C	-0.79740900	1.60283500	0.20974700
C	0.62452800	1.23474000	-0.18902300
C	0.92416400	-0.20178100	0.26084900
C	-1.35509100	-0.85251900	0.26488100
C	-1.78865000	0.53216300	-0.23122600
H	0.67492200	1.26265100	-1.30095800
H	-0.82536900	1.64778200	1.31816700
H	-1.40072400	-0.85427600	1.37298800

H	-1.78850200	0.50514400	-1.34127400
H	1.05759300	-0.23546700	1.36056200
O	-0.03870900	-1.13213400	-0.17858100
S	2.57955000	-0.81348100	-0.40207400
O	3.44977100	0.42453800	-0.03275900
O	2.86261400	-1.99269200	0.51657100
O	1.53531800	2.12771700	0.39638000
H	2.41426000	1.66488900	0.29568400
O	-1.15364000	2.85485400	-0.34472700
H	-2.10426600	2.95190200	-0.18162600
O	-3.05646000	0.91531300	0.26551600
H	-3.63444400	0.13601900	0.16510800
C	-2.22947900	-1.97550700	-0.27746900
H	-1.86094300	-2.94084800	0.11321200
H	-2.12940100	-1.99263600	-1.37799800
O	-3.57220200	-1.72939700	0.12104800
H	-4.15930600	-2.32849200	-0.35910000

A

-2541.2537582 Hartree

I	0.75377900	-2.14533900	-0.08717000
C	-1.02719900	-0.96421200	-0.04427700
C	-1.49185200	-0.42932500	-1.24456800
C	-1.65417100	-0.76756500	1.18427000
C	-2.64906100	0.35000800	-1.20123200
H	-0.97632000	-0.60063800	-2.18953800
C	-2.81212300	0.01350800	1.20324300
H	-1.26303900	-1.19708300	2.10649600
C	-3.30403300	0.56530200	0.01644600
H	-3.03429500	0.79024500	-2.12186000
H	-3.32386100	0.19252700	2.14942200
C	2.14663600	-0.53203500	0.07401100
C	2.67237300	0.00025600	-1.10130100
C	2.47253700	-0.06797800	1.34725300
C	3.57459400	1.06042000	-0.98581000
H	2.39416200	-0.38319900	-2.08289700
C	3.37403200	0.99380000	1.43837300
H	2.04156300	-0.50551900	2.24775800
H	3.99980400	1.50444100	-1.88648800
H	3.64362900	1.38608900	2.41979800
C	-4.58386600	1.36807200	0.03630400
F	-4.56821800	2.34791800	-0.88173500
F	-4.80032600	1.93434900	1.23350200
F	-5.64873000	0.59048500	-0.23398200

C	3.92187500	1.54988400	0.27702900
C	4.93548700	2.66387100	0.39715100
F	4.96658900	3.43226000	-0.70258500
F	6.17641200	2.17382100	0.57488600
F	4.67294800	3.46152600	1.44498600

Int1

-3148.2125513 Hartree

C	4.83841000	-2.10976300	0.98405500
C	4.69739100	-0.85383900	0.13662300
C	3.36868700	-0.89781200	-0.63289900
C	2.34076400	-2.38966500	0.92623700
C	3.58484000	-2.35275400	1.81856900
H	4.66754500	0.01289400	0.83253600
H	4.94911600	-2.96786300	0.28944300
H	2.42682100	-3.26133300	0.24907500
H	3.47195300	-1.50413500	2.52525300
H	3.45535500	-1.59601000	-1.48740300
0	2.24990200	-1.18764000	0.17058900
S	3.03925000	0.77777400	-1.40026800
0	4.30009000	0.90183200	-2.26831500
0	5.77235600	-0.76013000	-0.76311000
H	5.48958800	-0.09329000	-1.43380900
0	5.96965900	-1.99720300	1.82078100
H	5.92093700	-2.74687200	2.43359300
0	3.78352800	-3.56801100	2.50974900
H	2.91300800	-3.83169200	2.86221200
C	1.03890700	-2.48893000	1.71092300
H	0.18794000	-2.48809200	1.00667000
H	0.94466600	-1.59700800	2.35651800
0	1.08317600	-3.68326700	2.47723800
H	0.34681600	-3.68595100	3.10357300
0	1.80195800	0.47218200	-2.29160400
I	-0.58461400	0.18615700	-1.30377200
C	-2.50607900	-0.15253400	-0.35675800
C	-0.07729600	1.81037900	-0.01045700
C	-3.30491900	-1.16489500	-0.89468000
C	-2.90107100	0.57956400	0.76306600
C	-0.60920000	3.07379300	-0.27665300
C	0.81205400	1.58843100	1.04220100
C	-4.53534300	-1.43877800	-0.29425900
H	-2.96286600	-1.73320500	-1.76208100
C	-4.13474600	0.29513100	1.35363800
H	-2.27112700	1.36030800	1.18787500

C	-0.25928500	4.13993700	0.55388800
H	-1.29166700	3.23469200	-1.11235700
C	1.15671900	2.66265400	1.86500800
H	1.24957100	0.60454700	1.20718900
C	-4.95110700	-0.70941800	0.82509400
H	-5.16800300	-2.22998900	-0.69972200
H	-4.45253800	0.85705600	2.23302600
H	-0.66574900	5.13360400	0.36126700
C	0.61824600	3.93053500	1.62352600
H	1.85451200	2.50919400	2.68929400
C	-6.30251400	-0.97693200	1.43311100
C	0.95267300	5.07174400	2.55076600
F	-6.66510800	-2.26605300	1.30644100
F	-7.26751500	-0.24268100	0.84134900
F	-6.33537200	-0.67620300	2.74351400
F	0.89698800	6.26026300	1.92627500
F	2.18363000	4.94769400	3.07575400
F	0.09045200	5.13189400	3.58556500
S	-0.23727400	-2.80272200	-3.55137200
0	-1.25976900	-1.77492300	-3.01121200
C	0.75888800	-3.30833000	-2.11894300
H	0.07959400	-3.83270900	-1.43442300
H	1.55010900	-3.98932400	-2.46189400
H	1.18123700	-2.41576600	-1.64148900
C	1.02431100	-1.82921800	-4.42340100
H	1.43781900	-1.06269400	-3.74642400
H	1.80083600	-2.51993700	-4.78255400
H	0.50996400	-1.36828400	-5.27733200

Int2

-3148.2095873 Hartree

C	-4.71158500	0.38676100	-0.27509400
C	-3.26284800	0.84511500	-0.29002800
C	-3.05308800	2.02178000	0.67538600
C	-4.97021900	1.46209000	1.97757400
C	-5.20227100	0.19099500	1.15307100
H	-2.65967000	-0.00071800	0.08684800
H	-5.32841300	1.18519700	-0.73647500
H	-5.57960300	2.28029900	1.54523800
H	-4.60625600	-0.62259300	1.61311300
H	-3.40202700	2.97150600	0.22508300
O	-3.59106000	1.80311700	1.95507700
S	-1.22520300	2.24828800	1.00818900
O	-0.70939900	2.19122200	-0.49900400

0	-2.89415500	1.20049700	-1.59787300
H	-1.99500500	1.58944800	-1.49777300
0	-4.82966100	-0.81596100	-1.00927200
H	-5.69161200	-1.19179300	-0.77430200
0	-6.56741300	-0.16543400	1.07090500
H	-6.92857500	-0.07633700	1.97270900
C	-5.32295700	1.28662000	3.44902700
H	-5.12667700	2.23331300	3.98314400
H	-4.65852800	0.51155500	3.87232400
0	-6.69018300	0.90954200	3.53817300
H	-6.88235300	0.62934400	4.44307800
0	-1.11232100	3.66485100	1.53408200
I	1.41489600	0.77022100	-0.68177300
C	3.11679100	-0.57367200	-0.76503200
C	-0.01545600	-0.80307900	-0.47076700
C	4.38528900	0.00216600	-0.66577600
C	2.94146500	-1.94932700	-0.91643000
C	-0.76165100	-1.19410500	-1.58157500
C	-0.27063200	-1.30983600	0.80725800
C	5.50559900	-0.83042100	-0.71445700
H	4.49239700	1.08416900	-0.56398400
C	4.06983200	-2.77123500	-0.96188500
H	1.94862300	-2.39174100	-1.00124300
C	-1.80478200	-2.10677000	-1.40576000
H	-0.56381600	-0.77790100	-2.56948700
C	-1.30694800	-2.22861700	0.96945100
H	0.31221300	-0.98442400	1.66953800
C	5.34837900	-2.21305800	-0.85877600
H	6.50415400	-0.39652800	-0.64370300
H	3.94805900	-3.84847900	-1.08501600
H	-2.42514400	-2.39282900	-2.25383900
C	-2.07998300	-2.61153000	-0.13418400
H	-1.52769500	-2.62330700	1.96280100
C	6.55655200	-3.11198700	-0.85511500
C	-3.22824800	-3.56222000	0.08619000
F	6.85166700	-3.54181100	0.38958200
F	7.65292500	-2.48714400	-1.31949100
F	6.36912700	-4.21044700	-1.60868700
F	-4.06772500	-3.11171300	1.04085100
F	-2.78859600	-4.76697200	0.50772800
F	-3.95130900	-3.77075900	-1.02151300
S	2.92373300	4.21158500	-0.30470700
0	3.16031200	2.77445000	-0.82577000
C	2.30203800	4.07368100	1.40263100

H	2.98922900	3.39060300	1.91886300
H	2.36373300	5.07549800	1.85190700
H	1.26363500	3.71412800	1.42643300
C	1.39159400	4.78041000	-1.09912800
H	0.57413900	4.07921900	-0.87258100
H	1.16794300	5.78891300	-0.72249300
H	1.60101100	4.81788700	-2.17629500

Int3

-3148.2043705 Hartree

C	4.94322500	1.97475100	0.72771600
C	3.64883700	2.20521900	-0.03845200
C	3.70897100	1.45066500	-1.37686700
C	5.31917200	-0.11830900	-0.62138700
C	5.30853400	0.49672500	0.78161600
H	2.82640400	1.77194200	0.56748200
H	5.75007900	2.49962200	0.17589400
H	6.12455700	0.36723600	-1.20656900
H	4.53188800	-0.02121500	1.37442000
H	4.36734000	1.98975300	-2.08669200
0	4.05807000	0.09992400	-1.24707500
S	2.04585800	1.46308900	-2.22924000
0	1.69879900	2.96376300	-2.12104800
0	3.46864500	3.58076100	-0.25202100
H	2.73869400	3.63790200	-0.91372300
0	4.81980000	2.49071300	2.03776300
H	5.60152100	2.17557100	2.51718400
0	6.56793000	0.41498800	1.41635800
H	6.83406100	-0.52059600	1.33977700
C	5.49913700	-1.63556900	-0.61211600
H	5.69458800	-1.99254200	-1.63832000
H	4.54350100	-2.06669300	-0.28385800
0	6.55591700	-2.00876500	0.26616700
H	6.30527900	-2.82607100	0.71729400
0	2.36487700	1.03696400	-3.64481000
I	-0.48030500	0.00315200	-1.04675100
C	-2.23042700	-0.95894700	-0.14591700
C	0.89193800	-0.95843300	0.28054300
C	-3.47442100	-0.67143200	-0.70555300
C	-2.07765700	-1.81287800	0.94405600
C	1.26687200	-0.32284900	1.46528000
C	1.41644900	-2.19693000	-0.09219400
C	-4.60617000	-1.26742600	-0.14379100
H	-3.55314500	0.00005400	-1.56277800

C	-3.22013200	-2.40073900	1.49353000
H	-1.10152600	-2.03394200	1.37361700
C	2.21707500	-0.93532100	2.28474700
H	0.84094500	0.64003200	1.74963400
C	2.35031700	-2.81023700	0.74330700
H	1.11273300	-2.68297100	-1.02005500
C	-4.47995200	-2.12757800	0.95214500
H	-5.58915600	-1.06124600	-0.57019600
H	-3.11982500	-3.07700800	2.34363000
H	2.54566500	-0.43569800	3.19675600
C	2.76389500	-2.16891500	1.91577800
H	2.77451800	-3.77513400	0.46294400
C	-5.71143900	-2.72409100	1.58258200
C	3.81596500	-2.81137600	2.78492700
F	-6.69319600	-2.91693800	0.68429700
F	-6.21444900	-1.92121400	2.54267600
F	-5.45644800	-3.91014400	2.16248200
F	4.55568700	-1.89567500	3.43063700
F	4.66928500	-3.56417900	2.04921800
F	3.28595000	-3.62413600	3.71095100
S	-2.12221800	2.12887900	-3.82479300
0	-2.21403800	1.02407100	-2.74487700
C	-0.78360300	1.62954700	-4.94497700
H	-1.11638500	0.69114800	-5.40840700
H	-0.68087800	2.40853600	-5.71417000
H	0.16417100	1.48402600	-4.40600200
C	-1.33232600	3.55211100	-3.02621500
H	-0.32912200	3.28586100	-2.65383500
H	-1.27641400	4.36287400	-3.76705900
H	-2.00436300	3.84237000	-2.20742500

TS1

-3148.1715601 Hartree

C	4.51714100	-0.71523600	1.34236600
C	3.89707300	0.31694500	0.41337100
C	2.99378800	-0.40936500	-0.59951600
C	2.61179600	-2.28003500	0.81486000
C	3.44883600	-1.63409500	1.92547000
H	3.26624000	0.98854600	1.03133300
H	5.20346000	-1.34103600	0.73562500
H	3.26655900	-2.94345900	0.21798200
H	2.76716400	-1.01465700	2.54495100
H	3.60968500	-0.90923500	-1.37153100
O	2.05090700	-1.26723800	-0.01830500

S	1.95541000	0.84981600	-1.49186400
0	2.92259400	1.95474500	-1.85133900
0	4.91216100	1.02040300	-0.25298900
H	4.45301500	1.60418000	-0.89125800
0	5.21868800	-0.06057400	2.37523100
H	5.45043300	-0.75095100	3.01551200
0	4.12641800	-2.59040400	2.71099000
H	3.47162200	-3.27961200	2.93041900
C	1.43081600	-3.07550300	1.35661400
H	0.87545800	-3.52400400	0.51661400
H	0.75252200	-2.38017500	1.88384800
0	1.93702600	-4.07216100	2.23190000
H	1.20055200	-4.47878200	2.70797000
0	1.34080800	0.11644100	-2.67303300
I	-1.23218500	0.38303200	-1.85543400
C	-2.98239000	0.50968200	-0.64217400
C	0.01180300	1.62418100	-0.17411900
C	-3.82523400	-0.60506200	-0.63829300
C	-3.24635000	1.64198400	0.13159500
C	0.02163900	3.01205200	-0.32814600
C	-0.05441600	1.01452800	1.08111000
C	-4.96403700	-0.57908500	0.16991200
H	-3.59423000	-1.46868300	-1.26701800
C	-4.38237300	1.64895800	0.94249500
H	-2.58431800	2.50728100	0.12094000
C	-0.04272100	3.80918900	0.81575800
H	0.08331700	3.47155600	-1.31550000
C	-0.11709000	1.82766400	2.21188600
H	-0.04124800	-0.06992500	1.17996100
C	-5.23864800	0.54197000	0.96076900
H	-5.63209200	-1.44128300	0.18995700
H	-4.59447500	2.52037900	1.56394500
H	-0.03621900	4.89547400	0.71078800
C	-0.11884600	3.22368600	2.08615600
H	-0.16339700	1.36437300	3.19910800
C	-6.48768600	0.58497900	1.80122100
C	-0.27540600	4.08505000	3.30448200
F	-6.91479800	-0.64467500	2.13729100
F	-7.50433500	1.18636400	1.14918900
F	-6.30098000	1.27256300	2.94260700
F	0.28390400	5.29904500	3.14495000
F	0.28116800	3.52609300	4.39598900
F	-1.57654200	4.29931500	3.60686300
S	-1.42824900	-3.17407800	-3.37898900

O	-2.44878300	-2.05915300	-3.10845200
C	-0.37089900	-3.32873300	-1.89703100
H	-1.04813000	-3.55149700	-1.06205800
H	0.31314400	-4.17399000	-2.05931900
H	0.19052600	-2.40450800	-1.70934300
C	-0.17592200	-2.45510800	-4.49233600
H	0.31420500	-1.59875700	-4.00817100
H	0.55552900	-3.23657300	-4.74373200
H	-0.71786500	-2.14256900	-5.39457100

TS2

-3148.1713926 Hartree

C	-5.40881000	1.21302800	-1.58085200
C	-3.93125400	1.55888700	-1.69454700
C	-3.35377400	1.69435800	-0.27705300
C	-4.96596800	0.25663700	0.71254700
C	-5.60980200	0.01404600	-0.65731100
H	-3.43415900	0.71360800	-2.20727400
H	-5.92653100	2.08158000	-1.12406600
H	-5.50640800	1.08420400	1.21216400
H	-5.10304800	-0.85899300	-1.11884500
H	-3.68005300	2.65033800	0.17573100
0	-3.59246100	0.59083100	0.54976500
S	-1.49264500	1.75960700	-0.31677500
0	-1.16895700	2.46389200	-1.65087600
0	-3.76837800	2.75954900	-2.40184900
H	-2.80231400	2.91302100	-2.42471900
0	-5.93031900	0.93772100	-2.86186900
H	-6.81160600	0.56177700	-2.71232900
0	-7.00210300	-0.19591300	-0.56217700
H	-7.13101100	-0.83718500	0.16203800
C	-4.97939200	-0.98072000	1.60034500
H	-4.51172600	-0.73511300	2.57055400
H	-4.36872100	-1.76414000	1.12031700
0	-6.32989300	-1.39388200	1.76017600
H	-6.34441900	-2.28035900	2.14524300
0	-1.06509400	2.51140800	0.91028300
I	0.85858700	0.69732300	-2.26316000
C	2.28990200	-0.85324800	-1.98253000
C	-0.54474000	-0.53418100	-0.73297800
C	3.54442900	-0.49553900	-1.48368100
C	1.93957700	-2.17861200	-2.24891700
C	-1.50592700	-1.32194300	-1.36567900
C	0.07152000	-0.90817900	0.45781700

C	4.47512700	-1.50990400	-1.24501200
H	3.77738300	0.55633400	-1.29042500
C	2.87756500	-3.18074700	-1.99684200
H	0.95371100	-2.43834700	-2.63611900
C	-1.91536200	-2.49517400	-0.73332800
H	-1.94195800	-1.03432200	-2.32210200
C	-0.35182800	-2.08654100	1.07576500
H	0.84397300	-0.29390100	0.92095200
C	4.14055700	-2.84543300	-1.49525200
H	5.46404000	-1.25519900	-0.86035800
H	2.62428000	-4.22249800	-2.19787600
H	-2.67630400	-3.11761600	-1.20813300
C	-1.35120800	-2.87396100	0.49201500
H	0.10044400	-2.38507300	2.02245900
C	5.13145100	-3.93378500	-1.17264600
C	-1.85873800	-4.10759400	1.18015300
F	5.03456100	-4.32365300	0.11518300
F	6.40039300	-3.53019100	-1.36072100
F	4.94117700	-5.03053400	-1.92641900
F	-3.06940900	-3.89848800	1.75250000
F	-1.03799800	-4.52693200	2.15699500
F	-2.02269200	-5.13266900	0.32180500
S	3.11850100	3.47815800	-0.10473800
0	3.35665800	2.60221000	-1.33859100
C	2.33756800	2.43200000	1.17513700
H	2.98400200	1.55135200	1.28625000
H	2.32302900	3.00462500	2.11397700
H	1.31403800	2.15600900	0.89102400
C	1.66521800	4.50805300	-0.49617200
H	0.81420400	3.87057400	-0.77184600
H	1.42384400	5.12646600	0.38033500
H	1.96467200	5.14690300	-1.33767800

7t

-1728.7080039 Hartree

C	0.05603100	-3.00198000	1.48924800
C	1.09437900	-1.95876700	1.09632000
C	1.14248200	-1.88065000	-0.44241100
C	-1.07285100	-2.68051000	-0.74000400
C	-1.27044700	-2.75316100	0.77740600
H	0.75052300	-0.98299900	1.49357700
H	0.43436300	-3.99147800	1.16016700
H	-0.73535300	-3.66981100	-1.10289400
H	-1.66056300	-1.77091400	1.11601900

H	1.68936500	-2.75592700	-0.84421100
0	-0.09505200	-1.68766400	-1.04859600
S	2.16671700	-0.45662400	-1.00383100
0	3.36903200	-0.44640000	-0.13485400
0	2.34207200	-2.32953500	1.61917600
H	2.99185400	-1.68478300	1.28489400
0	-0.12275500	-2.97414000	2.88620100
H	-0.89264500	-3.53559100	3.06621800
0	-2.13259900	-3.80363800	1.15318400
H	-2.90644800	-3.74788600	0.56141400
C	-2.33188800	-2.25922200	-1.48585600
H	-2.12026600	-2.23308900	-2.56947400
H	-2.59997100	-1.23673100	-1.16411600
0	-3.35380200	-3.19372900	-1.17287200
H	-4.20234000	-2.85392800	-1.48751800
0	2.31751600	-0.54062500	-2.46229300
C	1.17314900	0.97828800	-0.60716100
C	1.43510100	1.67936300	0.57005000
C	0.16024300	1.35898300	-1.49178900
C	0.65010000	2.79198400	0.87709300
H	2.24280800	1.36236100	1.23014300
C	-0.62031600	2.46779000	-1.17497500
H	-0.01327300	0.79227400	-2.40579200
H	0.83450300	3.35341500	1.79321700
C	-0.37300600	3.17931000	0.00675600
H	-1.42311400	2.77804700	-1.84521500
C	-1.19785000	4.40638900	0.30906500
F	-1.17325000	4.72445600	1.61308600
F	-2.48450700	4.23821900	-0.04283400
F	-0.74438700	5.47877200	-0.36886300

B

-866.4305566 Hartree

I	-0.01233600	2.90101500	0.00000000
C	0.00735900	0.77713100	0.00000000
C	0.01525600	0.08999200	1.21780400
C	0.01525600	0.08999200	-1.21780400
C	0.02889300	-1.30587200	1.21253900
H	0.01360400	0.63028400	2.16508100
C	0.02889300	-1.30587200	-1.21253900
H	0.01360400	0.63028400	-2.16508100
H	0.04077000	-1.84860800	2.15899300
H	0.04077000	-1.84860800	-2.15899300
C	0.03431900	-2.00376300	0.00000000

C	-0.00547800	-3.50835700	0.00000000
F	0.59684300	-4.02921700	-1.08425800
F	-1.27259400	-3.97357000	0.00000000
F	0.59684300	-4.02921700	1.08425800

References:

[1] Zeng, H.; Li, Y.; Wu, R.; Liu, D.; Zhang, Y.; Xu, S.; Niu, D. Carbohydrate-DNA conjugation enabled by glycosyl radicals generated from glycosyl sulfinates. Org. Lett. 2023, doi.org/10.1021/acs.orglett.3c00833.
[2] Chen, Q.; Kong, F. ; Stereoselective glycosylation using fully benzylated pyrimidin-2-yl 1-thio-13-o-glycopyranosides Carbohydrate Research 1995, 272 149-157.
[3] Ming, X.-X.; Tian, Z.-Y.; Zhang, C.-P. Base-mediated O-arylation of alcohols and phenols by triarylsulfonium triflates. Chem. Asian J. 2019, 14, 3370-3379.
[4] Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Copper(II)-catalyzed metaselective direct arylation of alpha-aryl carbonyl compounds. Angew. Chem., Int. Ed. 2011, 50, 463-466.
[5] Lucchetti, N.; Scalone, M.; Fantasia, S.; Muniz, K. Sterically congested 2,6-disubstituted anilines from direct C-N bond formation at an Iodine(III) center. Angew. Chem., Int. Ed. 2016, 55, 1333513339.
[6] Guan, Y.; Townsend, S. D. Metal-free synthesis of unsymmetrical organoselenides and selenoglycosides. Org. Lett. 2017, 19, 5252-5255.
[7] Zhou, J.; Bao, Z.; Wu, P.; Chen, C. The preparation and application of diaryliodonium salts derived from gemfibrozil and gemfibrozil methyl ester. Synthesis 2022, 54, 1388-1394.
[8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
[9] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry 1994, 98 (45), 11623-11627.
[10] Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry 2011, 32 (7), 1456-1465.
[11] Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005, 7 (18), 3297-3305.
[12] Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics 2006, 8 (9), 1057-1065.
[13] Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. The Journal of Chemical Physics 2003, 119 (21), 1111311123.
[14] Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. Chemical Reviews 2005, 105 (8), 2999-3094.
[15] Neese, F., The ORCA program system. WIREs Computational Molecular Science 2012, 2 (1), 7378.
[16] Neese, F., Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science 2018, 8 (1), el327.
[17] Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C., The ORCA quantum chemistry program package. The Journal of Chemical Physics 2020, 152 (22).
[18] Neese, F., Software update: The ORCA program system-Version 5.0. WIREs Computational Molecular Science 2022, 12 (5), e1606.
[19] Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel HartreeFock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange. Chemical Physics 2009, 356 (1), 98-109.
[20] Mardirossian, N.; Head-Gordon, M., ω B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys 2016, 144 (21), 214110.
[21] Zheng, J.; Xu, X.; Truhlar, D. G., Minimally augmented Karlsruhe basis sets. Theoretical Chemistry Accounts 2011, 128 (3), 295-305.
[22] Stoychev, G. L.; Auer, A. A.; Neese, F., Automatic Generation of Auxiliary Basis Sets. Journal of Chemical Theory and Computation 2017, 13 (2), 554-562.
[23] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378-6396.
[24] Otlyotov, A. A.; Minenkov, Y., Gas-phase thermochemistry of noncovalent ligand-alkali metal ion clusters: An impact of low frequencies. Journal of Computational Chemistry 2023, 44 (22), 1807-1816.
[25] Kesharwani, M. K.; Brauer, B.; Martin, J. M. L., Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can

Anharmonic Force Fields Be Avoided? The Journal of Physical Chemistry A 2015, 119 (9), 17011714.
[26] Lu, T.; Chen, Q., Shermo: A general code for calculating molecular thermochemistry properties. Computational and Theoretical Chemistry 2021, 1200, 113249.
[27] Hirshfeld, F. L., Bonded-atom fragments for describing molecular charge densities. Theoretica chimica acta 1977, 44 (2), 129-138.
[28] Mayer, I., Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters 1983, 97 (3), 270-274.
[29] Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012, 33 (5), 580-592.
[30] Legault, C. Y. CYLview20, Université de Sherbrooke: Quebec, Montreal, Canada, 2020.

Characterization data

7a
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-
(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2H-pyran
7a was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($63.4 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.24(\mathrm{~m}$, 18 H), 7.21-7.19 (m, 2H), 5.09 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $4.35(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, 8.9 \mathrm{~Hz}, 1 \mathrm{H}) 3.66(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.1$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.03 \mathrm{ppm}$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 140.80,138.13,137.80,137.72,137.44,135.51(\mathrm{q}, J=33.3 \mathrm{~Hz})$, 130.44, 128.70, 128.62, 128.58, 128.56, 128.54, 128.13, 128.11, 128.08, 127.98, 127.94, 127.84, $127.74,125.84(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.26(\mathrm{q}, J=274.7 \mathrm{~Hz}), 91.22,86.20,79.55,77.48,76.88,76.06,75.59$, 75.24, $73.58,68.48 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3201, 2924, 2323, 2286, 2050, 1561, 1322, 1258, 1160, 1060, 754, 697, 636, 497, 456, 422.
$[\alpha] \mathrm{D}^{25}=+11.7\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 755.2261, found: 755.2260.
m. p.: $111.9-113.2^{\circ} \mathrm{C}$.

7b
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-nitrophenyl)sulfonyl)tetrahydro-2H-pyran
7b was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($69.2 \mathrm{mg}, 97 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.15(\mathrm{~m}$, $20 \mathrm{H}), 5.06(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57-3.48 (m, 2H), 3.41-3.35 (m, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) ~ \delta 150.97,142.87,138.07,137.65,137.62,137.32,131.24,128.73$,
$128.67,128.64,128.62,128.60,128.24,128.18,128.16,128.01,127.79,127.76,123.81,91.29,86.15$, $79.56,77.37,76.89,76.10,75.66,75.31,73.57,68.59 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3184, 2924, 2323, 2285, 2198, 2161, 2050,, 2024„, 1979, 1533, 1348, 1247, 1158, 1106, 855, 736, 647, 484, 428.
$[\alpha] \mathrm{D}^{25}=+13.6\left(\mathrm{c}=0.14, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{NO}_{9} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 732.2238, found: 732.2242.
m. p.: $48.2-48.9^{\circ} \mathrm{C}$.

4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2yl)sulfonyl)benzonitrile

7c was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($65.3 \mathrm{mg}, 94 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.15(\mathrm{~m}$, $20 \mathrm{H}), 5.06(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 3 \mathrm{H}), 4.11$ (t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.35,138.07$, 137.75, 137.64, 137.35, 132.40, 130.47, 128.71, $128.67,128.66,128.62,128.58,128.20,128.14,127.99,127.85,127.75,117.63,117.29,91.23,86.15$, $79.49,77.40,76.92,76.08,75.63,75.28,73.56,68.63 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3214, 2925, 2323, 2283, 2209, 2185, 2164, 2050, 1979, 1566, 1364, 1258, 1053, 855, 753, 644, 487, 456, 424.
$[\alpha] \mathrm{D}^{25}=+13.3\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 712.2339, found: 712.2341.
m. p.: $48.5-49.6^{\circ} \mathrm{C}$.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-chlorophenyl)sulfonyl)tetrahydro-2H-pyran
7d was prepared according to General procedure B as a colorless syrup using PE/EA (5:1) as the eluent ($59.0 \mathrm{mg}, 84 \%$ yield).
${ }^{1} \mathbf{H}^{\mathbf{N}} \mathbf{N R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.90(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 16 \mathrm{H})$, 7.22 (dd, $J=7.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.80(\mathrm{~m}, 3 \mathrm{H})$,
$4.62(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-$ $3.51(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=9.8,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDC13) $\delta 140.84,138.17,137.90$, 137.74, $137.50,135.62,131.29,129.11$, $128.75,128.60,128.56,128.52,128.09,128.05,127.91,127.74,127.72,91.18,86.24,79.56,77.57$, 76.94, 76.03, 75.57, 75.21, 73.56, 68.63 ppm.

IR (thin film, cm $^{-1}$): 2943, 2866, 2323, 2165, 2050, 1980, 1647, 1623, 1510, 1642, 1442, 1381, 1247, 1190, 1106, 1076, 981, 884, 793, 755, 695, 573, 444.
$[\alpha] \mathrm{D}^{25}=+10.9\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{ClO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 721.1997, found: 721.1998.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-bromophenyl)sulfonyl)tetrahydro-2H-pyran
7e was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($65.0 \mathrm{mg}, 87 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.24(\mathrm{~m}$, $18 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $-4.37(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{ddd}, J=9.8$, $4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 138.18,137.91,137.75,137.50,136.18,132.12,131.35,129.57$, $128.76,128.62,128.61,128.58,128.54,128.11,128.07,127.94,127.92,127.79,127.74,91.20,86.25$, $79.59,77.56,76.95,76.05,75.58,75.24,73.59,68.63 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2943, 2866, 2323, 2166, 2050, 1980, 1647, 1623, 1568, 1462, 1442, 1381, 1247, 1106, 1076m 981, 920, 884, 793, 695, 602, 573, 444.
$[\alpha] D^{25}=+9.1\left(c=0.11, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{BrO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 765.1492, found: 765.1495.
m. p.: $51.9-52.8^{\circ} \mathrm{C}$.

$7 f$
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(phenylsulfonyl)tetrahydro-2H-pyran

7f was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($58.0 \mathrm{mg}, 87 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.08(\mathrm{~m}, 22 \mathrm{H}), 5.14$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.32(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{t}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 138.26,138.11,137.82,137.63,137.23,134.01,129.78,128.81$, $128.62,128.56,128.53,128.47,128.09,128.06,128.03,127.90,127.78,127.76,127.69,91.19,86.35$, $79.76,77.69,77.03,76.05,75.58,75.21,73.56,68.66 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2944, 2866, 2323, 2050, 1980, 1653, 1624, 1570, 1510, 1462, ,1443, 1382, 1248, 1192, 1106, 1045, 980, 921, 884, 822, 783, 686, 610, 454.
$[\alpha]_{\mathrm{D}}{ }^{25}=+15.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 687.2387$, found: 687.2386.
m. p.: $156.0-156.7^{\circ} \mathrm{C}$.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-methoxyphenyl)sulfonyl)tetrahydro-2H-pyran
$7 \mathbf{g}$ was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($31.0 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.17(\mathrm{~m}$, $18 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42-4.34 (m, 3H), 4.07 (t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.11,138.31,138.17,137.85,137.71,132.05,128.83,128.63$, $128.60,128.58,128.54,128.50,128.12,128.05,127.90,127.78,127.75,114.08,91.28,86.41,79.76$, $77.86,77.11,76.06,75.56,75.23,73.63,68.86,55.69 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3194, 2924, 2323, 2285, 2208, 2164, 2049, 19811577, 1497, 1363, 1260, $1149,1084,751,630,512,471,452,424$.
$[\alpha] \mathrm{D}^{25}=+10.0\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 717.2493, found: 717.2493.
m. p.: $128.2-129.7^{\circ} \mathrm{C}$.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-(tert-butyl)phenyl)sulfonyl)tetrahydro-2H-pyran
7h was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($62.0 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.23(\mathrm{~m}$, $16 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.73(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ $-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.34(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 157.97$, 138.28, 138.18, 137.87, 137.72, 134.25, 129.66, 128.76, $128.63,128.58,128.54,128.10,128.03,127.92,127.83,127.81,125.88,91.27,86.42,79.83,77.76$, $77.06,76.09,75.52,75.22,73.69,68.62,35.34,31.14 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3204, 2961, 2644, 2323, 2285, 2190, 2162, 2050, 2068, 2023, 1980, 1574, $1365,1259,1053,456,424$.
$[\alpha] \mathrm{D}^{25}=+7.3\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 743.3013$, found: 743.3015.
m. p.: $48.7-49.3^{\circ} \mathrm{C}$.

(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(mesitylsulfonyl)tetrahydro-2H-pyran
$7 \mathbf{i}$ was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($62.0 \mathrm{mg}, 89 \%$ yield).
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{4 0 0} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right) \delta 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 14 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.93$ ($\mathrm{s}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.80(\mathrm{~m}$, $2 \mathrm{H}), 4.61(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{dt}, J=9.8,3.2 \mathrm{~Hz}$, 1 H), 2.73 ($\mathrm{s}, 6 \mathrm{H}$), 2.25 ($\mathrm{s}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.50,141.62,138.45,138.11,137.86,132.08,132.02,128.94$, $128.58,128.54,128.47,128.40,128.09,127.99,127.80,127.69,127.64,91.39,86.55,79.98,77.52$, $77.10,75.96,75.58,75.21,73.61,69.07,23.26,21.10 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2942, 2865, 2323, 2184, 2161, 2050, 1979, 1644, 1623, 1568, 1509, 1441, $1380,1328,1106,1051,979,919,883,751,695,666,579,511,443$.
$[\alpha] \mathrm{D}^{25}=+14.1\left(\mathrm{c}=0.29, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 729.2856$, found: 729.2858.
m. p.: $152.7-153.7^{\circ} \mathrm{C}$

7j
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-(naphthalen-2-ylsulfonyl)tetrahydro-2H-pyran
7j was prepared according to General procedure B as a yellow solid using PE/EA (4:1) as the eluent ($50.0 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 14 \mathrm{H}), 7.19(\mathrm{dd}, J=7.0,2.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12 (dd, $J=6.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=10.4$, $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=23.4,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59 (dd, $J=11.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=9.8,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 138.28,138.02,137.81,137.69,135.63,134.38,132.13,131.67$, 129.64, 129.42, 128.86, 128.80, 128.63, 128.57, 128.56, 128.45, 128.11, 128.08, 128.06, 128.04, $127.91,127.77,127.70,127.62,127.57,124.58,91.45,86.40,79.86,77.79,77.04,76.07,75.62,75.23$, 73.63, 68.71 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3218, 2959, 2323, 2182, 2166, 2049, 1979, 1567, 1362, 1259, 1054, 754, 643, 512, 473, 449, 438.
$[\alpha] \mathrm{D}^{25}=+8.6\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 737.2543$, found: 737.2545.
m. p.: $52.6-53.4^{\circ} \mathrm{C}$.

7k
(2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-chloro-3-(4-(((R)-tetrahydrofuran-3-yl)oxy)benzyl)phenyl)sulfonyl)tetrahydro-2H-pyran
$7 \mathbf{k}$ was prepared according to General procedure B as a white solid using PE/EA (2:1) as the eluent ($55.0 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.74(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.13(\mathrm{~m}, 21 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.02-4.83(\mathrm{~m}, 3 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.28(\mathrm{~m}$, $3 \mathrm{H}), 4.06-3.83(\mathrm{~m}, 7 \mathrm{H}), 3.75(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.00(\mathrm{~m}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 156.29,140.72,140.35,138.18,137.94,137.74,137.47,135.77$, 131.66, 130.34, 130.12, 130.10, 129.10, 128.74, 128.63, 128.58, 128.54, 128.10, 128.09, 128.07, $127.93,127.89,127.73,127.69,115.64,91.16,86.25,79.69,77.61,77.34,76.96,76.03,75.55,75.23$, $73.54,73.22,68.66,67.28,38.35,33.06 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2955, 2923, 2853, 2323, 2161, 2050, 1979, 1508, 1454, 1376, 1332, 1258, 1153, 1087, 1014, 795, 755, 697, 659, 559, 461.
$[\alpha] D^{25}=+9.3\left(c=0.14, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{51} \mathrm{H}_{51} \mathrm{ClO}_{9} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 897.2835$, found: 897.2839.
m. p.: $60.3-61.4^{\circ} \mathrm{C}$.

71
5-(2,5-dimethyl-4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)sulfonyl)phenoxy)-2,2-dimethylpentanoic acid
71 w was prepared according to General procedure B as a white solid using PE/EA (3:1) as the eluent ($31.0 \mathrm{mg}, 39 \%$ yield).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 15 \mathrm{H}), 7.17-7.12$ (m, 4H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.75(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 3 \mathrm{H})$, 3.43-3.36 (m, 1H), 2.64 (s, 3H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 161.11,140.19,138.39,138.19,137.86,133.59,128.81,128.63$, $128.59,128.52,128.44,128.13,128.05,127.99,127.89,127.77,127.74,127.71,126.56,124.78$, $114.02,91.77,86.55,80.19,77.89,77.36,76.03,75.53,75.24,73.65,69.06,68.27,41.92,36.85,25.22$, 25.01, 21.18, 15.72 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3278, 2923, 2161, 2049, 1979, 1631, 1497, 1453, 1375, 1257, 1088, 1045, 793, 753, 697, 664, 528, 465.
$[\alpha] \mathbf{D}^{25}=+7.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{O}_{10} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 859.3486$, found: 859.3483.
m. p.: $63.0-64.8^{\circ} \mathrm{C}$.

2-chloro-5-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)sulfonyl)pyridine

$\mathbf{7 m}$ was prepared according to General procedure B as a colorless syrup using PE/EA (4:1) as the eluent ($47.0 \mathrm{mg}, 67 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.21$ (m, 19H), 7.18-7.15 (m, 2H), 5.05 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.76(\mathrm{~m}, 4 \mathrm{H}), 4.56(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41-4.38 (m, 3H), $4.11(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.36(\mathrm{~m}$, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.10,150.95,140.26,138.11,137.73,137.64,137.33,132.70$, $128.77,128.68,128.64,128.62,128.24,128.18,128.06,128.01,127.93,127.76,124.42,91.42,86.11$, $79.57,77.36,76.90,76.10,75.71,75.33,73.68,68.65 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3063, 2922, 2323, 2162, 2050, 2036, 1979, 1566, 1496, 1451, 1359, 1336, 1258, 1163, 1088, 1026, 797, 773, 734, 696, 639, 577, 458.
$[\alpha] \mathrm{D}^{25}=+10.4\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{ClNO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 722.1950$, found: 722.1952.

Methy4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)sulfonyl)benzoate
7n was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($63.2 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 14 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 165.59,141.10,138.17,137.88,137.72,137.49,135.00,129.88$, $129.86,128.75,128.61,128.56,128.53,128.49,128.09,128.06,127.91,127.81,127.72,127.68,91.22$, 86.24, 79.74, 77.52, 76.91, 76.03, 75.60, 75.22, 73.56, 68.60, 52.73 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3197, 2922, 2323, 2196, 2163, 2079, 2050, 2038, 1980, 1728, 1135, 1279, 1157, 1105, 734, 696, 633, 528, 501, 488, 457, 426.
$[\alpha] \mathrm{D}^{25}=+11.1\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 745.2442$, found: 745.2445.
m. p.: $43.2-45.1^{\circ} \mathrm{C}$.

70
(2R,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-chlorophenyl)sulfonyl)tetrahydro-2H-pyran
70 was prepared according to General procedure B as a white solid using PE/EA (3:1) as the eluent ($54.0 \mathrm{mg}, 77 \%$ yield).
${ }^{1} \mathbf{H}^{\text {NMR (400 MHz, CDCl }} 3$) $\delta 7.87(\mathrm{~d}, ~ J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 18 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H})$, $5.01(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 140.65,138.43,137.90,137.84,137.67,135.62,131.32,129.03$, $128.79,128.65,128.59,128.48,128.39,128.03,128.01,127.99,127.90,127.84,127.73,92.01,83.82$, $78.07,75.67,74.51,74.31,73.65,73.03,72.97,68.62 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3221, 2923, 2323, 2285, 2185, 2166, 2050, 1979, 1572, 1365, 1258, 1089, 1053, 754, 632, 459, 449.
$[\alpha] \mathrm{D}^{25}=-7.6\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{ClO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 721.1997, found: 721.1996.
m. p.: $89.4-90.7^{\circ} \mathrm{C}$.

(2R,3S,4R,5R)-3,4,5-tris(benzyloxy)-2-((4-(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2Hpyran
7p was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($53.5 \mathrm{mg}, 87 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}$, $15 \mathrm{H}), 4.97-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.57(\mathrm{~m}, 4 \mathrm{H}), 4.47-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=12.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-$ $3.62(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.08 \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 141.16,137.90,137.78,135.38(\mathrm{q}, J=33.3 \mathrm{~Hz}), 130.19,128.58$,
128.56, 128.54, 128.50, 128.01, 128.00, 127.93, 127.89, 127.85, 125.93 ($\mathrm{q}, J=4.0 \mathrm{~Hz}$), 123.30 (q, J $=273.7 \mathrm{~Hz}$), $92.51,80.95,75.34,73.79,72.23,71.71,71.35,67.07 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2954, 2921, 2851, 2322, 2162, 2049, 1979, 1735, 1496, 1455, 1403, 1376, 1321, 1259, 1130, 1086, 1061, 1016, 798, 737, 697, 558.
$[\alpha] \mathrm{D}^{25}=-6.3\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 635.1686, found: 635.1683.
m. p.: $160.0-160.8^{\circ} \mathrm{C}$.

(2S,3R,4S,5R)-3,4,5-tris(benzyloxy)-2-((4-(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2Hpyran
$\mathbf{7 q}$ was prepared according to General procedure B as a white solid using PE/EA (5:1) as the eluent ($39.0 \mathrm{mg}, 64 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}$, $15 \mathrm{H}), 5.02(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.84(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{dd}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-63.16 \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 141.00,138.22,137.78,137.55,135.65(\mathrm{q}, J=33.3 \mathrm{~Hz}), 130.15$, $128.68,128.61,128.54,128.19,128.11,127.97,126.11(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.28(\mathrm{q}, J=273.7 \mathrm{~Hz}), 91.86$, $85.13,77.26,76.59,75.83,75.58,73.40,68.13 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2958, 2924, 2323, 2165, 2050, 2025, 1979, 1497, 1454, 1403, ,1321, 1259, 1215, 1134, 1084, 1061, 1016, 794, 753, 665, 459.
$[\alpha] \mathrm{D}^{25}=+10.6\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 635.1686$, found: 635.1685 .
m. p.: $89.7-90.6^{\circ} \mathrm{C}$.

$7 r$
(2R,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-6-((4-chloro-3-(4-(((S))-tetrahydrofuran-3-yl)oxy)benzyl)phenyl)sulfonyl)tetrahydro-2H-pyran
$7 \mathbf{r}$ was prepared according to General procedure B as a yellow solid using PE/EA (2:1) as the eluent ($58.0 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.27(\mathrm{~m}, 17 \mathrm{H}), 7.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.83-4.64(\mathrm{~m}, 4 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.76(\mathrm{~m}, 7 \mathrm{H})$, $3.63(\mathrm{dd}, J=9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 156.24,140.44,140.25,138.47,137.90,137.80,137.69,135.46$, $131.89,130.39,130.18,129.92,129.08$, 128.75, 128.64, 128.58, 128.45, 128.40, 128.01, 127.99, $127.96,127.84,127.69,127.67,115.62,91.85,83.80,77.85,77.30,75.59,74.49,74.28,73.59,73.19$, $72.96,72.89,68.38,67.26,38.23,33.04 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 2956, 2922, 2853, 2323, 2188, 2162, 2050, 1979, 1582, 1508, 1453, 1361, 1327, 1258, 1148, 1090, 1027, 796, 752, 696, 637, ,582, 440.
$[\alpha] \mathbf{D}^{25}=-0.8\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{51} \mathrm{H}_{51} \mathrm{ClO}_{9} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 897.2835$, found: 897.2838.
m. p.: $49.4-50.2^{\circ} \mathrm{C}$.

7s
(2S,3R,4S,5R)-3,4,5-tris(benzyloxy)-2-((4-chloro-3-(4-(((S)-tetrahydrofuran-3-yl)oxy)benzyl)phenyl)sulfonyl)tetrahydro-2H-pyran
7s was prepared according to General procedure B as a yellow solid using PE/EA (3:1) as the eluent ($44.0 \mathrm{mg}, 58 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.71-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 15 \mathrm{H})$, 7.07 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-4.78$ (m, 5 H$), 4.68$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.94(\mathrm{~m}, 7 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 156.32,140.75,140.55,138.25,137.82,137.58,135.82,131.63$, $130.40,130.30,130.13,128.67,128.62,128.59,128.51,128.17,128.06,127.94,115.67,91.81,85.15$, $77.40,77.34,76.68,75.79,75.50,73.37,73.23,68.02,67.30,38.39,33.10 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3218, 2924, 2645, 2323, 2283, 2162, 2049, 1980, 1561, 1365, 1259, 1090, 1050, 854, 625, 452, 429.
$[\alpha] D^{25}=+0.8\left(c=0.13, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{ClO}_{8} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 777.2259$, found: 777.2260.
m. p.: $58.5-60.1^{\circ} \mathrm{C}$.

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-((4-(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2H-pyran-3,4,5-triol
$7 \mathbf{t}$ was prepared according to General procedure B as a white solid using $\mathrm{DCM} / \mathrm{MeOH}$ (10:1) as the eluent ($28.1 \mathrm{mg}, 76 \%$ yield).
${ }^{1}{ }^{\mathbf{H}}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.37$ (m, 2H), 3.27-3.16 (m, 2H), $3.04(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO- d_{6}) $\delta-61.64 \mathrm{ppm}$.
${ }^{13}$ C NMR ($\mathbf{1 0 1 ~ M H z , ~ D M S O - d} \boldsymbol{d}$) $\delta 141.71,132.32(\mathrm{q}, J=32.2 \mathrm{~Hz}) 130.33,125.92(\mathrm{q}, J=4.0$ $\mathrm{Hz}) 123.52(\mathrm{q}, J=273.7 \mathrm{~Hz}), 91.30,81.36,77.38,69.89,69.00,60.46 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3319, 2944, 2832, 2161, 2049, 1978, 1654, 1448, 1412, 1259, 1110, ,1020, 602.
$[\alpha] \mathrm{D}^{29}=-64.2(\mathrm{c}=0.68, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 395.0383$, found: 395.0381.
m. p.: $39.0-40.1^{\circ} \mathrm{C}$

(2S,3R,4S,5S,6R)-2-((6-chloropyridin-3-yl)sulfonyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-

3,4,5-triol

$7 \mathbf{u}$ was prepared according to General procedure B as a yellow solid using $\mathrm{DCM} / \mathrm{MeOH}$ (10:1) as the eluent ($13.0 \mathrm{mg}, 38 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-$ 3.24 (m, 2H) ppm.
${ }^{13}$ C NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, ~ M e O D\right) ~ \delta 157.83,151.91,141.99,134.42,125.91,93.06,82.78,78.88$, 71.25, 70.50, 62.22 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3338, 2950, 2839, 2161, 2050, 1644, 1407, 1111, 1013, 490.
$[\alpha] \mathrm{D}^{29}=-73.8(\mathrm{c}=0.39, \mathrm{MeOH})$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{7} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 362.0072$, found: 362.0070.

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((4-(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2H-pyran-3,4,5-triol
7 v was prepared according to General procedure B as a yellow solid using $\mathrm{DCM} / \mathrm{MeOH}$ (10:1) as the eluent ($23.3 \mathrm{mg}, 63 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, ~ M e O D\right) ~ \delta 8.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.59-$ 3.50 (m, 2H) ppm.
${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{MeOD}\right) \delta-64.66 \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{M e O D}\right) \delta 142.34,136.35(\mathrm{q}, J=33.3 \mathrm{~Hz}), 131.74,127.01(\mathrm{q}, J=4.0 \mathrm{~Hz})$, $124.88(\mathrm{q}, J=273.7 \mathrm{~Hz}), 93.76,81.45,75.63,69.88,68.12,62.22 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3363, 2479, 2219, 2071, 1324, 1119, 1062, 972, 818, 425.
$[\alpha] \mathbf{D}^{29}=-137.7(\mathrm{c}=0.39, \mathrm{MeOH})$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 395.0383$, found: 395.0380.

(2S,3R,4R,5R,6S)-2-methyl-6-((4-(trifluoromethyl)phenyl)sulfonyl)tetrahydro-2H-pyran-3,4,5triol

7w was prepared according to General procedure B as a yellow solid using DCM/MeOH (10:1) as the eluent ($16.0 \mathrm{mg}, 45 \%$ yield).
${ }^{1} \mathbf{H}^{\text {NMR }}(\mathbf{4 0 0} \mathbf{~ M H z}, ~ M e O D) ~ \delta 8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.92-4.88(\mathrm{~m}$, $1 \mathrm{H}), 4.65-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($\left.\mathbf{3 7 6} \mathbf{~ M H z}, ~ M e O D\right) ~ \delta-64.69 \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, ~ M e O D\right) ~ \delta 142.60,136.57(\mathrm{q}, J=33.3 \mathrm{~Hz}), 130.94,127.51(\mathrm{q}, J=4.0 \mathrm{~Hz})$, $124.82(\mathrm{q}, J=273.7 \mathrm{~Hz}), 95.64,75.22,72.73,67.43,18.46 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3331, 2945, 2834, 2050, 1979, 1654, 1448, 1406, 1111, 1018, 545.
$[\alpha] D^{29}=-121.5,(c=0.12, \mathrm{MeOH})$
HRMS (ESI-TOF): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 379.0434$, found: 379.0434.
m. p.: $174.2-174.7^{\circ} \mathrm{C}$

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(mesitylsulfonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate

7x was prepared according to General procedure B as a yellow solid using PE/EA (3:1) as the eluent ($16.0 \mathrm{mg}, 31 \%$ yield).
${ }^{1} \mathbf{H}^{\text {NMR }}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.94(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.09 (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=12.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (dd, $J=12.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.87(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.39,170.36,169.27,169.22,144.19,142.01,132.23,130.91$, 88.48, 76.11, 73.52, 67.77, 67.08, 61.69, 23.14, 21.15, 20.81, 20.68, 20.60, 20.48 ppm .

IR (thin film, $\mathbf{c m}^{-1}$): 3564, 3130, 1744, 1602, 1366, 1317, 1220, 1150, 1062, 909, 594, 511.
$[\alpha] \mathrm{D}^{25}=-12.7\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{11} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 537.1397$, found: 537.1401.
m. p.: $253.0-255.5^{\circ} \mathrm{C}$

(2S,3R,4S,5S,6R)-2-((4-chloro-3-(4-(((R)-tetrahydrofuran-3-
yl)oxy)benzyl)phenyl)sulfonyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
$\mathbf{8}$ was prepared according to General procedure B as a yellow solid using DCM/MeOH (10:1) as the eluent ($29.9 \mathrm{mg}, 58 \%$ yield).
${ }^{1}$ H NMR (400 MHz, MeOD) $\delta 7.88-7.78$ (m, 2H), 7.63 (dd, $J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=$ $8.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.84 (dd, $J=8.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.01-4.94$ (m, 1H), 4.40 (dt, $J=9.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17-7.07$ (m, 2H), 3.98-3.80 (m, 4H), 3.73-3.63 (m, 1H), 3.62-3.45 (m, 2H), 3.43-3.36 (m, $1 \mathrm{H}), 3.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 157.59,141.89,141.73$, 136.93, 133.24, 132.13, 131.31, 131.12, $130.11,116.70,93.07,82.74,78.98,78.59,74.02,71.39,70.48,68.13,62.40,39.07,33.86 \mathrm{ppm}$.

IR (thin film, $\mathbf{c m}^{-1}$): 3372, 2923, 2853, 1508, 1464, 1308, 1241, 1150, 1090, 1043, 897, 757, 647.
$[\alpha] D^{25}=-7.3\left(c=0.15, \mathrm{CHCl}_{3}\right)$.
HRMS (ESI-TOF): calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}_{9} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 537.0957$, found: 537.0951.
m. p.: $107.0-108.5^{\circ} \mathrm{C}$

NMR Spectra

Figure S6. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- \boldsymbol{d}_{6}) Spectra for compound 6-II-3
$\stackrel{\text { N }}{N}$

$10 \quad 0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S7. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ D M S O - ~} d_{6}$) Spectra for compound 6-II-3

 f1 (ppm)

Figure S8. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) Spectra for compound 6-II-3

Figure S9. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) Spectra for compound 6-II-4

$10 \quad 0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S10. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO- d_{6}) Spectra for compound 6-II-4

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 5040 \quad 30 \quad 2010$ f1 (ppm)

Figure S11. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) Spectra for compound 6-II-4

Figure S12. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) Spectra for compound 6-III

$\begin{array}{ccccccccc}10 & 0 & -10 & -20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210 \\ f 1(\mathrm{ppm})\end{array}$

Figure S13. ${ }^{19}$ F NMR (376 MHz , DMSO- \boldsymbol{d}_{6}) Spectra for compound 6-III

 f1 (ppm)

Figure S14. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) Spectra for compound 6-III

[^0]

Figure S15. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 4a

4a

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectra for compound 4a

Figure S17. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) Spectra for compound 5 a

Figure S18. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) Spectra for compound 5b

 f1 (ppm)

Figure S19. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) Spectra for compound 5b

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 4 d

4d

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40$ f1 (ppm)

Figure S21. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 4d

Figure S22. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{5 d}$

5d

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectra for compound 5d

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 4 e

Figure S25. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 4 e

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{\boldsymbol{6}}\right)$ Spectra for compound 5e

 f1 (ppm)

Figure S27. ${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}) Spectra for compound 5e

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 4 f

 f1 (ppm)

Figure S29. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 4 f

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound $5 f$

Figure S31. ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectra for compound 5 f

Figure S32. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7a

$10 \quad 0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S33. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7a

ひ
 ナ

f1 (ppm)
Figure S34. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7a

Figure S35. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 7b

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0 \quad-10$ f1 (ppm)

Figure S36. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) Spectra for compound 7b

Figure S37. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7c

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0$ f1 (ppm)

Figure S38. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7c

Figure S39. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7d

Figure S40. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7d

Figure S41. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7e

7e
 1 \qquad

Figure $\mathrm{S} 42 .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) Spectra for compound 7e

Figure S43. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7f

$7 f$

Figure S44. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7f

Figure S45. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 g}$

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40$ f1 (ppm)

Figure S46. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) Spectra for compound $\mathbf{7 g}$

Figure S47. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 7 h

7h

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0 \quad-10$ f1 (ppm)

Figure S48. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7h

Figure $\mathbf{S 4 9 .}{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound $7 \mathbf{7}$

Figure S50. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) Spectra for compound 7i

Figure S51. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 j}$

$\begin{array}{llllllllllll}110 & 100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

Figure S52. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 j

Figure S53. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 k}$

Figure S54. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) Spectra for compound 7 k

Figure S55. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 71

Figure S56. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 71

Figure S57. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 m

Figure S58. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 m

Figure S59. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 n

$7 n$

Figure S60. ${ }^{13}$ C NMR (101 MHz, CDC13) Spectra for compound 7n

Figure S61. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) Spectra for compound 70

f1 (ppm)
Figure S62. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) Spectra for compound 7 o

Figure S63. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7p

$21020019018017016015014013012011010090 \quad 80$ f1（ppm）

Figure S65．${ }^{13}$ C NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）Spectra for compound 7p

○寸の

Figure S66. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 q}$
$\stackrel{0}{0}$

$10 \quad 0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S67. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 q}$

Figure S68. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 q}$

Figure S69. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 r}$

 f1 (ppm)

Figure S70. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound $\mathbf{7 r}$

Figure S71. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) Spectra for compound 7s

$21020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40$ f1 (ppm)

Figure S72. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7s

Figure S73. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}$) Spectra for compound 7t

$7 t$

Figure S74. ${ }^{19}$ F NMR (376 MHz , DMSO- \boldsymbol{d}_{6}) Spectra for compound 7t

 f1 (ppm)

Figure S75. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) Spectra for compound 7t

Figure S76. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ M e O D) ~ S p e c t r a ~ f o r ~ c o m p o u n d ~ 7 u ~}$

Figure S77. ${ }^{13}$ C NMR (101 MHz , MeOD) Spectra for compound 7u

\bullet
\bullet
$\dot{+}$
i

$100-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S79. ${ }^{19}$ F NMR (376 MHz , MeOD) Spectra for compound 7v

Figure S80. ${ }^{13}$ C NMR (101 MHz, MeOD) Spectra for compound 7v

Figure S81. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ M e O D) ~ S p e c t r a ~ f o r ~ c o m p o u n d ~ 7 w ~}$

$7 w$
$10 \quad 0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210$ f1 (ppm)

Figure S82. ${ }^{19}$ F NMR (376 MHz , MeOD) Spectra for compound 7w

Figure S83. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) Spectra for compound 7w

Figure S84 $^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 x

Figure S85. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra for compound 7 x

Figure S86. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right)$ Spectra for compound 8

Figure S87. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) Spectra for compound 8

[^0]:

