Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Base catalyzed *one-pot* thia-Michael addition-oxidation reaction of heteroaromatic thiols to 2-aryl-3-nitro-2*H*-chromenes and their antibacterial evaluation

Barsha Samanta¹, Bhabani Shankar Panda¹, Seetaram Mohapatra^{1*}, Sabita Nayak¹, Debdutta Bhattacharya², Chita Ranjan Sahoo²

¹Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India ²ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar-751023, Odisha, India

**Corresponding Author* Email: seetaram.mohapatra@gmail.com

Contents

1.	General Information	.2-2
2.	Experimental Procedure and Characterisation Data	2-
	6	
3.	¹ H NMR Spectra, ¹³ C NMR Spectra, and HRMS Spectra of	
	Heteroaromatic-2-thiol based-3-nitro-2 <i>H</i> -Chromene derivatives 17(a-t)	6-
	37	
4.	Molecular docking procedure and its studies on the synthesized compounds	37-
	51	
5.	Anti-bacterial evaluation procedure and Data	51-
	52	

1. General information

All reagents and solvents were purchased from commercial suppliers. DABCO, salicylaldehyde, trans- β -nitro styrene, triethylamine, pyrimidine-2-thiol, pyridine-2-thiol, and thiophenol were purchased from Sigma-Aldrich and used without further purification. The progress of the reaction was monitored by Thin Layer Chromatography (TLC) performed on silica gel aluminium plates and visualization was done by UV light. ¹H NMR and ¹³C NMR Spectrum were recorded at 400 MHz and 100 MHz respectively, with TMS as an internal standard. Chemical shifts (δ) are reported in parts per million (ppm), downfield from the internal standard (TMS, δ = 0.00 ppm) relative to residual CHCl₃ (¹H: δ = 7.26 ppm, ²⁰C: δ = 77.00 ppm) as an internal reference. Coupling constants (*J*) are reported in Hertz (Hz). Peak multiplicity is indicated as follows: s-singlet, d-doublet, t-triplet, q-quartet, m-multiplets, and dd-doublet of doublet. High-resolution mass Spectra (HRMS) were recorded using the Bruker microTOF-QII mass spectrometer model at the laboratory of IISER, Berhampur.

2. Experimental procedure

2.1. Experimental procedure for the synthesis of 2-aryl-3-nitro-2H-chromene-based heteroaromatic thiols 17(a-t)

A mixture of substituted 2-aryl-3-nitro-2*H*-chromene derivatives [15(a-q),1.0 mmol], pyrimidine-2-thiol/thiophenol/pyridine-2-thiol [16(a-c),1.0 mmol], and Et₃N (1.0 mmol) was taken in a clean, oven-dried seal tube, along with ethanol. This mixture was subjected to an environment of 90°C for two hours. Using the TLC, the progress of the reaction was monitored. The reaction mixture was diluted with water upon completion, and the product was extracted with ethyl acetate. The organic layer was separated, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The impure product was then refined via standard silica gel (100–200 mesh) column chromatography, employing a mixture of ethyl acetate and hexane, generating the desired heteroaromatic thiol-based 2-aryl-3-nitro-2*H*-chromene derivatives 17(a-t) with a good to excellent yields (59%–94%).

2.2.1. 2-((2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17a)

Reddish-yellow gum (85%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.49(d, *J*= 5.2 Hz, 2H), 7.57-7.55(m, 2H), 7.40-7.34(m, 4H), 7.15-7.11(m, 1H), 6.98(t, *J*= 5.2 Hz, 1H), 6.84-6.80(m, 1H), 6.98(t, J= 5.2 Hz, 1H), 6.84-6.80(m, 1H),

2H), 6.47(d, J= 4 Hz, 1H), 6.04(d, J= 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.8, 157.6, 153.2, 139.4, 134.8, 130.1, 128.9, 128.7, 127.4, 125.6, 125.3, 121.3, 121.2, 117.2, 116.3, 77.5; HRMS (ESI) calculated for C₁₉H₁₄N₂OS [M +H]⁺ 319.0905, found 319.0915

2.2.2. 2-((6-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17b)

Reddish-brown gum (87%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.51(d, *J*=5.2 Hz, 2H), 7.55-7.52(m, 2H), 7.39-7.32(m, 4H), 7.07(dd, $J_{12} = 2.4$ Hz, $J_{13} = 8.8$ Hz, 1H), 7.01(t, *J*= 4.4 Hz, 1H), 6.75(d, *J*= 8.4 Hz, 1H), 6.51 (d, *J*= 4 Hz, 1H), 6.02(d, *J*= 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.4, 157.7, 151.7, 138.9, 136.1, 129.7, 128.9, 128.7, 127.5, 126.2, 125.3, 124.6, 122.9, 117.7, 117.4, 77.7; HRMS (ESI) calculated for C₁₉H₁₃ClN₂OS [M +H]⁺ 353.0517, found 353.0505 and [M +H+2]⁺ 355.0491

2.2.3. 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17c)

Reddish-yellow gum (86%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*=5.2 Hz, 2H), 7.56-7.52(m, 2H),7.41-7.33(m, 4H), 7.22 (dd, *J*₁₂ = 2.4 Hz, *J*₁₃ = 8.8 Hz, 1H), 7.02 (t, *J*= 4.4 Hz, 1H), 6.71 (d, *J*= 8.4 Hz, 1H), 6.51 (d, *J*= 4 Hz, 1H), 6.03 (d, *J*= 4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 157.8, 152.2, 138.8, 136.0, 132.7, 131.1, 128.9, 128.8, 128.2, 127.5, 124.5, 123.4, 118.2, 117.4, 113.5, 77.6; HRMS (ESI) calculated for C₁₉H₁₃BrN₂OS [M +H]⁺ 397.0012, found 397.0019 and [M +H+2]⁺ 398.9984

2.2.4. 2-((7-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17d)

Reddish-yellow gum (78%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.42(d, *J*=4.8 Hz, 2H), 7.48-7.45(m, 3H), 7.33-7.28(m, 3H), 7.16(d, *J*= 8.4 Hz, 1H), 6.94-6.91(m, 1H), 6.86(dd, *J*₁₂ = 2.4 Hz, *J*₁₃ = 8 Hz, 1H), 6.41(d, *J*=3.6 Hz, 1H), 5.95(d, *J*=3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 157.7, 153.8, 138.9, 134.8, 129.1, 128.9, 128.8, 127.4, 126.8, 124.8, 124.3, 123.0, 120.4, 119.6, 117.3, 77.9; HRMS (ESI) calculated for C₁₉H₁₃BrN₂OS [M +H]⁺ 397.0012, found 397.0009 and [M +H+2]⁺ 399.0011

2.2.5. 2-((8-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17e).

Reddish-brown gum (62%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.48(d, *J*= 4.4 Hz, 2H), 7.58-7.55(m, 2H), 7.40-7.29(m, 4H), 7.19(dd, J_{12} = 1.6 Hz, J_{13} = 8 Hz, 1H), 6.98(t, *J*= 4.8 Hz, 1H), 6.73(t, *J*= 8 Hz, 1H), 6.58(d, *J*= 4 Hz, 1H), 6.14(d, *J*= 4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.5, 157.6, 149.0, 138.9, 135.3, 130.5, 128.9, 128.7, 127.1, 125.2, 124.1, 123.0, 121.4, 121.2, 117.3, 77.5; HRMS (ESI) calculated for C₁₉H₁₃ClN₂OS [M +H]⁺ 353.0517, found 353.0547 and [M +H+2]⁺ 355.0529

2.2.6. 2-((8-bromo-6-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17f)

Yellow gum (77%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.53(d, *J*= 4.4Hz, 2H), 7.49-7.45(m, 2H), 7.34-7.25(m, 5H), 6.96(t, *J*= 4.8 Hz, 1H), 6.56(d, *J*= 4.4 Hz, 1H), 6.08(d, *J*= 4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.0, 157.8, 148.7, 138.3, 136.6, 132.6, 128.9, 128.7, 127.1, 126.4, 124.7, 124.4, 124.0, 117.5, 110.9, 77.6; HRMS (ESI) calculated for C₁₉H₁₂BrClN₂OS [M +H]⁺ 430.9620, found 430.9664 and [M +H+2]⁺ 432.9652, [M +H+4]⁺ 434.9643

Reddish-yellow gum (80%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*= 4.8Hz, 2H), 7.57-7.54(m, 2H), 7.49(s, 2H), 7.42-7.34(m, 3H), 7.03(t, *J*=4.8 Hz, 1H), 6.62(d, *J*= 4 Hz, 1H), 6.16(d, *J*=4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.0, 157.8, 149.1, 138.3, 136.5, 135.4, 128.9, 128.7, 127.5, 127.1, 124.5, 124.3, 117.5, 113.3, 111.3, 77.6; HRMS (ESI) calculated for C₁₉H₁₂Br₂N₂OS [M +H]⁺ 476.9097, found 476.9070 and [M +H+2]⁺ 478.9077, [M +H+4]⁺ 480.9071

2.2.8. 2-((6,8-dichloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17h)

Reddish-yellow gum (82%); ¹H NMR (400 MHz, CDCl₃): 8.44 (d, J = 5.0 Hz, 2H), 7.48-7.46 (m, 2H), 7.34-7.23 (m, 4H), 7.12 (d, J = 2.7 Hz, 1H), 6.95 (t, J = 4.8 Hz, 1H), 6.56 (d, J = 4.1 Hz, 1H), 6.07 (d, J = 4.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm); 171.2, 157.9, 147.8, 138.5, 136.7, 130.0, 129.1, 128.9, 127.3, 126.0, 124.5, 124.2, 124.1, 122.3, 117.6, 77.7; HRMS (ESI) calculated for C₁₉H₁₂Cl₂N₂OS [M +H]⁺ 387.0127, found 387.0146 and [M +H+2]⁺ 389.0137

2.2.9. 2-((6-bromo-8-methoxy-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17i)

Reddish-yellow gum (59%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.51(d, *J*= 5.2 Hz, 2H), 7.57-7.52(m, 3H), 7.37-7.31(m, 2H), 7.20(d, *J*= 2 Hz, 1H), 7.01(t, *J*= 4.4 Hz, 1H), 6.89(d, *J*= 2 Hz, 1H), 6.54(d, *J*= 4.4 Hz, 1H), 6.07(d, *J*= 4.4 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.4, 158.1, 157.7, 148.8, 138.7, 136.1, 128.8, 128.7, 127.4, 124.3, 123.6, 120.3, 117.3, 116.2, 112.8, 77.4, 56.4; HRMS (ESI) calculated for C₂₀H₁₅BrN₂O₂S [M +H]⁺ 427.0118, found 427.0089

2.2.10. 2-((6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17j)

Reddish-yellow gum (78%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*= 4.4 Hz, 2H), 7.51-7.46(m, 2H), 7.38(d, *J*=2.4, 1H), 7.07-7.01(m, 2H), 6.91-6.87(m, 2H), 6.71(d, *J*= 8.8 Hz, 1H), 6.50(d, *J*= 3.6 Hz, 1H), 5.96(d, *J*= 4 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.5, 160.1, 157.7, 151.6, 136.2, 130.8, 129.7, 129.2, 126.0, 125.2, 124.4, 122.9, 117.8, 117.4, 114.1, 77.3, 55.3; HRMS (ESI) calculated for C₂₀H₁₅ClN₂O₂S [M +H]⁺ 383.0623, found 383.0638 and [M +H+2]⁺ 385.0608

2.2.11. 2-((6,8-dichloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17k)

Red gum (91%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*= 4.4 Hz, 2H), 7.50-7.47(m, 2H), 7.31(d, *J*= 2.4 Hz, 1H), 7.17(d, *J*= 2.4 Hz, 1H), 7.03(t, *J*= 4.4 Hz, 1H), 6.91-6.87(m, 2H), 6.60(d, *J*= 4.4 Hz, 1H), 6.08(d, *J*= 4 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.2, 160.1, 157.8, 147.6, 136. 8, 130.2, 129.8, 129.0, 125.7, 124.2, 124.1, 123.9, 122.2, 117.5, 114.1, 77.3, 55.3; HRMS (ESI) calculated for C₂₀H₁₄Cl₂N₂O₂S [M +H]⁺ 417.0233, found 417.0250 and [M +H+2]⁺419.0247

2.2.12. 2-((6,8-dibromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17l)

Reddish yellow gum (83%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.51(d, *J*= 5.2 Hz, 2H), 7.50-7.46(m, 4H), 7.03(t, *J*= 5.2 Hz, 1H), 6.90-6.88(m, 2H), 6.59(d, *J*= 4 Hz, 1H), 6.08(d, *J*= 4.8 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.1, 160.1, 157.8, 149.1, 136.7, 135.3, 132.3, 130.2, 129.0, 127.4, 124.5, 124.2, 117.5, 114.0, 113.2, 77.3, 55.3; HRMS (ESI) calculated for C₂₀H₁₄Br₂N₂O₂S [M +H]⁺ 506.9202, found 506.9201 and [M +H+2]⁺ 508.9183, [M +H+4]⁺ 510.9181

2.2.13. 2-((8-bromo-6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17m)

Brownish-yellow gum (88%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.51(d, *J*=4.8 Hz, 2H), 7.52-7.47(m, 2H), 7.35-7.32(m, 2H), 7.03(t, *J*=4.4 Hz, 1H), 6.91-6.87(m, 2H), 6.60(d, *J*= 4 Hz, 1H), 6.08(d, *J*= 4.4 Hz, 1H), 3.8(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.2, 160.1, 157.8, 148.6, 136.7, 132.6, 130.2, 128.9, 126.2, 124.6, 124.3, 124.1, 117.5, 114.0, 110.9, 77.3, 55.3; HRMS (ESI) calculated for C₂₀H₁₄BrClN₂O₂S [M +H]⁺ 460.9728, found 460.9724 and [M +H+2]⁺ 462.9716, [M +H+4]⁺ 464.9698

2.2.14. 2-((6-bromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17n)

Reddish yellow gum (89%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*=4.4 Hz, 2H), 7.52-7.45(m, 3H), 7.20(dd, J_{12} =2.4 Hz, J_{13} =8.4 Hz, 1H), 7.03(t, *J*=5.2 Hz, 1H), 6.90-6.88(m, 2H), 6.66(d, *J*=8.8 Hz, 1H), 6.49(d, *J*= 4Hz, 1H), 5.96(d, *J*=4.4 Hz, 1H), 3.80(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 160.1, 157.7, 152.1, 136.3, 132.7, 130.8, 129.2, 128.1, 128.1, 124.2, 123.4, 118.3, 117.4, 114.1, 113.3, 77.3, 55.3; HRMS (ESI) calculated for C₂₀H₁₅BrN₂O₂S [M +H]⁺427.0118, found 427.0121 and [M +H+2]⁺429.0106

2.2.15. 2-((6-bromo-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (170)

Yellow gum (69%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.51(d, *J*= 5.2 Hz, 2H), 7.52-7.48(m, 2H), 7.36-7.33(m, 3H), 7.22(dd, *J*₁₂= 2.8 Hz, *J*₁₃= 8.8 Hz, 1H), 7.03(t, *J*= 4.8 Hz, 1H), 6.69(d, *J*= 8 Hz, 1H), 6.48(d, *J*= 3.6 Hz, 1H), 5.98(d, *J*= 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.3, 157.8, 151.9, 137.2, 135.3, 134.8, 132.8, 130.9, 129.0, 128.9, 128.8, 128.2, 124.9, 123.3, 118.2, 117.4, 113.7, 77.3; HRMS (ESI) calculated for C₁₉H₁₂BrClN₂OS [M +H]⁺ 430.9622, found 430.9619 and [M +H+2]⁺ 432.9621, [M +H+4]⁺ 434.9583

2.2.16. 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (17p)

Reddish yellow gum (74%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.52(d, *J*= 5.2 Hz, 2H), 7.52-7.49(m, 2H), 7.38-7.34(m, 3H), 7.08(dd, *J*₁₂= 2.8 Hz, *J*₁₃= 8.8 Hz, 1H), 7.03(t, *J*= 4.4 Hz, 1H), 6.74(d, *J*= 8.8 Hz, 1H), 6.48(d, *J*= 3.6 Hz, 1H), 5.98(d, *J*= 4 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 171.3, 157.8, 151.4, 137.2, 135.4, 134.8, 130.9, 129.9, 129.0, 128.9, 128.8, 126.4, 125.4, 125.0, 122.8, 117.8, 117.4, 77.3; HRMS (ESI) calculated for C₁₉H₁₂Cl₂N₂OS [M +H]⁺ 387.0127, found 387.0145 and [M +H+2]⁺ 389.0150

2.2.17. 8-methoxy-2-phenyl-4-(phenylthio)-2H-chromene (17q)

Reddish-yellow gum (81%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 7.44-7.41(m, 2H), 7.39-7.26(m, 7H), 7.24-7.19(m, 1H), 7.14-7.08(m, 1H), 6.83- 6.78(m, 2H), 5.98(d, *J*= 3.6 Hz, 1H), 5.94(d, *J*= 3.6 Hz, 1H), 3.82(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 148.1, 142.3, 139.9, 133.6, 130.6, 129.6, 129.2, 128.6, 128.4, 127.7, 127.1, 126.9, 121.8, 120.7, 117.3, 113.1, 77.3, 56.2; HRMS (ESI) calculated for C₂₂H₁₈O₂S [M +H]⁺ 347.1108, found 347.1136

2.2.18. 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyridine (17r)

Brownish-yellow gum (86%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.45- 8.43 (m, 1H), 7.56-7.45 (m, 4H), 7.41-7.33 (m, 3H), 7.23 (dd, $J_{12} = 8.7, J_{13} = 2.3$ Hz, 1H), 7.12-7.08 (m, 1H), 7.06-7.02 (m, 1H), 6.74 (d, J = 8.7 Hz, 1H), 6.52 (d, J = 4.1 Hz, 1H), 6.00 (d, J = 3.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 158.6, 152.5, 149.9, 138.9, 136.9, 135.5, 133.0, 128.9, 128.8, 128.3, 127.1, 125.5, 122.9, 121.6, 120.4, 118.3, 113.7, 77.6; HRMS (ESI) calculated for C₂₀H₁₄BrNOS [M +H]⁺ 396.0059, found 396.0067 and [M +H+2]⁺ 398.0126

2.2.19. 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyridine (17s)

Reddish yellow gum (82%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.44-8.42 (m, 1H), 7.53-7.48 (m, 1H), 7.42 (dd, J_{12} = 9.1, J_{13} = 2.3 Hz, 3H), 7.35 (dd, J = 6.6, 2.1 Hz, 2H), 7.12-7.02 (m, 3H), 6.79-6.75 (m, 1H), 6.47 (d, J = 3.7 Hz, 1H), 5.96 (d, J = 4.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 158.2, 151.6, 149.9, 137.3, 136.9, 134.7, 134.6, 130.1, 129.0, 128.5, 126.6, 126.1, 125.5, 122.4, 121.8, 120.5, 117.8, 76.7; HRMS (ESI) calculated for C₂₀H₁₃Cl₂NOS [M +H]⁺ 386.0175, found 386.0143 and [M +H+2]⁺ 388.0123, [M +H+4]⁺ 390.000

2.2.20. 2-((8-bromo-6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyridine (17t)

Red thick gum (94%); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (ppm) 8.43-8.42 (m, 1H), 7.50 (td, J_{12} = 7.7, J_{13} =1.8 Hz, 1H), 7.42-7.38 (m, 2H), 7.38 (d, J = 2.7 Hz, 1H), 7.32 (d, J = 2.7 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 7.05-7.02 (m, 1H), 6.90-6.87 (m, 2H), 6.62 (d, J = 4.6 Hz, 1H), 6.06 (d, J = 4.1 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ (ppm) 160.0, 158.1, 149.9, 148.7, 137.0, 136.2, 132.8, 130.2, 128.6, 126.5, 125.3, 124.7, 123.6, 121.6, 120.5, 114.1, 111.1, 77.3, 55.2; HRMS (ESI) calculated for C₂₁H₁₅BrClNO₂S [M +H]⁺ 459.9775, found 459.9814 and [M +H+2]⁺ 461.9772, [M +H+4]⁺ 463.9774

- 3. ¹H NMR Spectra, ¹³C NMR Spectra, and HRMS Spectra of Heteroaromatic-2-thiol based-3-nitro-2*H*-Chromene derivatives 17(a-t).
 - **3.1.** *2-((2-phenyl-2H-chromen-4-yl)thio)pyrimidine* (17a):

¹H NMR Spectrum of (17a)

HRMS Spectrum of (17a)

3.2. 2-((6-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17b):

¹H NMR Spectrum of (17b)

¹³C NMR Spectrum of (17b)

HRMS Spectrum of (17b)

3.3. 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17c):

¹³C NMR Spectrum of (17c)

HRMS Spectrum of (17c)

3.4. 2-((7-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17d):

¹³C NMR Spectrum of (17d)

HRMS Spectrum of (17d)

3.5. *2-((8-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine* (17e):

¹H NMR Spectrum of (17e)

HRMS Spectrum of (17e)

3.6. 2-((8-bromo-6-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17f):

¹H NMR Spectrum of (17f)

¹³C NMR Spectrum of (17f)

HRMS Spectrum of (17f)

3.7. 2-((6,8-dibromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17g):

HRMS Spectrum of (17g)

3.8. 2-((6,8-dichloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17h):

¹H NMR Spectrum of (17h)

HRMS Spectrum of (17h)

3.9. 2-((6-bromo-8-methoxy-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17i):

¹H NMR Spectrum of (17i)

¹³C NMR Spectrum of (17i)

3.10. 2-((6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17j):

¹H NMR Spectrum of (17j)

HRMS Spectrum of (17j)

3.11. 2-((6,8-dichloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17k):

¹³C NMR Spectrum of (17k)

HRMS Spectrum of (17k)

3.12. 2-((6,8-dibromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17I):

¹H NMR Spectrum of (17l)

HRMS Spectrum of (17l)

3.13. 2-((8-bromo-6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17m):

¹H NMR Spectrum of (17m)

¹³C NMR Spectrum of (17m)

3.14. 2-((6-bromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17n):

¹H NMR Spectrum of (17n)

HRMS Spectrum of (17n)

3.15. 2-((6-bromo-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (170):

¹H NMR Spectrum of (170)

¹³C NMR Spectrum of (170)

3.16. 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (17p):

HRMS Spectrum of (17p)

3.17. 8-methoxy-2-phenyl-4-(phenylthio)-2H-chromene (17q):

¹H NMR Spectrum of (17q)

3.18. 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyridine (17r):

HRMS Spectrum of (17r)

3.19. 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyridine (17s):

¹H NMR Spectrum of (17s)

3.20. 2-((8-bromo-6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyridine (17t):

¹H NMR Spectrum of (17t)

HRMS Spectrum of (17t)

4. Molecular docking table and studies of compound (17a-e and 17g-s) against bacterial DNA gyrase of *E. coli* and *S. aureus*

The docking calculation of compounds **17(a-t)** was carried out by using AutoDock Tools version v4.2. Crystal structure of the *E. coli* protein, bacterial DNA gyrase (PDBID: 3G7E), and *S. aureus* protein, bacterial DNA gyrase (PDBID: 3G7B), was retrieved from Protein Data Bank (https://www. rcsb.org/), and 3D structures of the synthesized ligands were prepared by ChemDraw Ultra 12.0. Initially, during the molecular docking procedure, polar H-bonds were added, bounded ligands with water molecules were eliminated and other default parameters were employed. The 2D illustration of the docked complex of ligand-receptor was visualized by PyMOL (www.pymol.org) and BIOVIA Discovery Studio R2 2017. Subsequently, the top docking score was selected for further assessment of antibacterial properties.

Table S1. Docking score and binding interactions of synthesized heteroaromatic thiol-based 2-aryl-3-nitro-2H-chromene derivatives 17(a-t) with amino acid residues of DNA gyrase.

	E. coli				S. aureus			
Compounds	Docking score (kCal/mol)	Residues showing interaction		eraction	Docking score (kCal/mol)	Residues s	showing inte	raction
17a	-8.6	GLY88,	ASP35,	LYS89,	-7.2	GLU35,	ASN31,	ILE79
								38

		ALA39,	ARG62,	ILE80,		THR127, ILE63	, ILE129,
		ILE64, ASI	PRO65, N32	ALA / 6,		SER32, ILE28	
17b	-8.2	ILE64,	LYS89,	ALA39,	-7.3	ARG61, GLU35	, VAL56
		ARG62, GI	LU36, PR	065		ILE129, SER32	2, ILE28,
						ILE63, ASN31	
17c	-8.5	ILE64,	GLY88,	LYS89,	-7.1	ARG61, GLU35	, VAL56
		ALA39,	PHE90,	ARG62,		ILE28, ILE129	, SER32,
		GLU36				ILE63, ASN31	
17d	-7.7	LYS89,	GLU36,	ARG62,	-7.7	PRO64, ASN31	, GLU35,
		ILE64,	VAL29,	ASN32,		ARG61, ILE63	, ILE28,
		ALA33, IL	E80, PHE	.90 • • • • • •		THR127, ILE129,	
l'/e	-8.0	ILE64,	GLY88,	LY S89,	-7.3	GLU35, ARG6	I, ILE63
		ALA39,	GLU36,	PRO65,		ILE129, ILE28, AS	SN31
1 = 0	0 7	AKG62, PE	IE90				CI II25
171	-8.7	1LE80, L	A5N32,	PRO65,	-/./	ILE03, IHKIZ/	, GLU35,
		GLU30,	AKG02,	L 1 589,		ASN31, ILE28	
17~	0.2	ALA39, PD		ADC62	7.5) 11 E 20
ı/g	-8.3	ILE04, V	JL 1 00,	AKU02,	-7.5	$\begin{array}{c} \text{LEU80,} \\ \text{ILE125} \\ \text{ILE62,} \\ \text{CLU25} \\ \end{array}$	P, ILE20
		PRO65	ALAJ9,	ULU30,		GIV62 ASN31	, FRO04
17h	_7 1	<u>A SP35</u>	I VS89	GLU36	_7 1	II F28 II F63	II F129
1 / 11	-/.1	PHE90	PRO65	ALA76	-/.1	VAL56 GLU35	1LL12
		ILE80 ILE	64. ASN3	32. GLY88		VIL50, GL055	
17i	-7.0	LYS89.	ASP35.	ALA39.	-6.5	ILE63. ILE28.	ASN31
171	7.0	VAL97. AF	RG62. GL	Y88	0.5	ILE129, IEE20,	. GLU35
			,			ARG61,	,;
17i	-8.4	PHE90,	PRO65,	LYS89,	-6.7	ILE79, ASN31, IL	E63, ILE28,
- • 5		ASP35,	GLY88,	ASP59,		ILE129, SER32, A	SP58
		ALA33, IL	E64				
17k	-8.1	LYS89,	ASP35,	GLY88,	-6.9	ILE79, PRO64, IL	E63, ILE28
		РНЕ90,	PRO65,	ILE80,		ILE129, VAL56	5, SER32
		ALA76, IL	E64			ASP58, ASN31	
171	-7.3	LYS89,	ASP35,	GLY88,	-6.6	PRO64, ARG6	1, ILE63
		GLU36,	PHE90,	PRO65,		ALA38, GLU35	, GLY62
		ILE80,	ALA'/6,	ILE64,		ILE79, ASN31	
1.5		ASP59, AS	N32	CI V00			
l'/m	-/./	LY S89,	ASP35,	GLY88,	-6.6	ARG61, $GLU33$	ASP34
		GLU30,	PHE90,	$\frac{PKO05}{4}$		ILE03, ILE28, ILE	279, ASN31
17	0.4	ILE80, ALA	$\frac{1}{0}, \frac{1}{1}$	$\frac{104, \text{ASN}52}{\text{DD}065}$	6.4	$\frac{1}{1}$	
1 / n	-8.4	L 1 589, DHEQO	ASP33, II E64		-0.4	ILE/9, ILE03, ILI SER32 ASP58	E20, ILE29
		ASP50	ILL04,	ALAJJ,		SER52, ASF 56	
170	7.4	I VS89	ASP35	GI V88	7.4	ARG61 GLU3	5 II F63
170	-/.4	ARG62	$\Delta L \Delta 39$	VAL97	-/.4	VAL 56 IL F129	S, EELOS, SER32
		HIS102	11L/137,	VILD/		ILE28 ASN31	, <u>5ER52</u>
17n	-8.6	LYS89	ASP35	ALA39	-72	ARG61 GLU3	5. ILE79
17P	0.0	VAL97.	ARG62.	GLU36	1.2	ILE63. ILE129	ILE28
		PRO65, PH	E90	02000,		SER32, ASN31	,
17g	-8.5	LYS89,	ALA39,	ARG62,	-7.5	ILE79, ILE63,	GLY62
- ' 1	0.0	GLU36,	PHE90.	PRO65.	,	GLU35, PRO64	
		ILE64	,	r.		,	
17r	-8.4	LYS89,	ALA39,	ARG62,	-7.4	ASN31, ILE63,	GLU35
		GLU36,	РНЕ90,	PRO65,		ILE79, PRO64, GI	.Y62
		ILE64					

17s	-7.8	LYS89,	ASP35,	ALA39,	-6.9	ILE63,	ILE28,	SER32,
		ARG62,	GLU36,	PHE90,		ASN31,	ILE79,	GLU35,
		PRO65, I	LE64, ILE8	0		PRO64, C	GLY62, AR	G61
17t	-8.8	PHE90,	ARG62,	GLU36,	-7.9	ILE79, IL	.E63, PRO	54, ILE28,
		ILE64,	LYS89,	ILE80,		ILE129,	VAL56,	SER32,
		GLY88,	ASN32,	HIS102,		ASN31, A	ASP58	
		LEU101						

a) 2-((2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17a)

Figure S1(i). Binding interaction of compound **17a** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S1(ii). Binding interaction of compound **17a** with *S. aureus* DNA gyrase (PDBID:3G7B)

b) 2-((6-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17b)

Figure S2(i). Binding interaction of compound 17b with E. coli DNA gyrase (PDBID:3G7E)

Figure S2(ii). Binding interaction of compound **17b** with *S. aureus* DNA gyrase (PDBID:3G7B)

c) 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17c)

Figure S3(i). Binding interaction of compound **17c** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S3(ii). Binding interaction of compound **17c** with *S. aureus* DNA gyrase (PDBID:3G7B)

d) 2-((7-bromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17d)

Figure S4(i). Binding interaction of compound 17d with E. coli DNA gyrase (PDBID:3G7E)

Figure S4(ii). Binding interaction of compound **17d** with *S. aureus* DNA gyrase (PDBID:3G7B)

e) 2-((8-chloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17e)

Figure S5(i). Binding interaction of compound 17e with E. coli DNA gyrase (PDBID:3G7E)

Figure S5(ii). Binding interaction of compound **17e** with *S. aureus* DNA gyrase (PDBID:3G7B)

g) 2-((6,8-dibromo-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17g)

Figure S6(i). Binding interaction of compound 17g with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S6(ii). Binding interaction of compound **17g** with *S. aureus* DNA gyrase (PDBID:3G7B)

h) 2-((6,8-dichloro-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17h)

Figure S7(i). Binding interaction of compound 17h with E. coli DNA gyrase (PDBID:3G7E)

Figure S7(ii). Binding interaction of compound **17h** with *S. aureus* DNA gyrase (PDBID:3G7B)

i) 2-((6-bromo-8-methoxy-2-phenyl-2H-chromen-4-yl)thio)pyrimidine (17i)

Figure S8(i). Binding interaction of compound 17i with E. coli DNA gyrase (PDBID:3G7E)

Figure S8(ii). Binding interaction of compound **17i** with *S. aureus* DNA gyrase (PDBID:3G7B)

j) 2-((6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17j)

Figure S9(i). Binding interaction of compound **17**j with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S9(ii). Binding interaction of compound **17j** with *S. aureus* DNA gyrase (PDBID:3G7B)

k) 2-((6,8-dichloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17k)

Figure S10(i). Binding interaction of compound **17k** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S10(ii). Binding interaction of compound **17k** with *S. aureus* DNA gyrase (PDBID:3G7B)

l) 2-((6,8-dibromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17l)

Figure S11(i). Binding interaction of compound 17l with E. coli DNA gyrase (PDBID:3G7E)

Figure S11(ii). Binding interaction of compound **171** with *S. aureus* DNA gyrase (PDBID:3G7B)

m) 2-((8-bromo-6-chloro-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17m)

Figure S12(i). Binding interaction of compound **17m** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S12(ii). Binding interaction of compound **17m** with *S. aureus* DNA gyrase (PDBID:3G7B)

n) 2-((6-bromo-2-(4-methoxyphenyl)-2H-chromen-4-yl)thio)pyrimidine (17n)

Figure S13(i). Binding interaction of compound **17n** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S13(ii). Binding interaction of compound **17n** with *S. aureus* DNA gyrase (PDBID:3G7B)

o) 2-((6-bromo-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (170)

Figure S14(i). Binding interaction of compound 170 with E. coli DNA gyrase (PDBID:3G7E)

Figure S14(ii). Binding interaction of compound **170** with *S. aureus* DNA gyrase (PDBID:3G7B)

p) 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyrimidine (17p)

Figure S15(i). Binding interaction of compound **17p** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S15(ii). Binding interaction of compound **17p** with *S. aureus* DNA gyrase (PDBID:3G7B)

q) 8-methoxy-2-phenyl-4-(phenylthio)-2H-chromene (17q)

Figure S16(i). Binding interaction of compound **17q** with *E. coli* DNA gyrase (PDBID:3G7E)

Figure S16(ii). Binding interaction of compound **17q** with *S. aureus* DNA gyrase (PDBID:3G7B)

r) 2-((6-bromo-2-phenyl-2H-chromen-4-yl)thio)pyridine (17**r**)

Figure S17(i). Binding interaction of compound 17r with E. coli DNA gyrase (PDBID:3G7E)

Figure S17(ii). Binding interaction of compound **17r** with *S. aureus* DNA gyrase (PDBID:3G7B)

s) 2-((6-chloro-2-(4-chlorophenyl)-2H-chromen-4-yl)thio)pyridine (17s)

Figure S18(i). Binding interaction of compound 17s with E. coli DNA gyrase (PDBID:3G7E)

Figure S18(ii). Binding interaction of compound **17s** with *S. aureus* DNA gyrase (PDBID:3G7B)

5. Anti-bacterial evaluations Data

The *in vitro* antibacterial sensitivity assay of all the synthesized compounds was performed using agar-well diffusion methods against the test organisms namely, Gram-positive bacteria *S. aureus* and Gram-negative bacteria *E. coli*. Gentamicin was chosen as the standard drug. Preliminarily, the developed synthesized compounds were dissolved in DMSO. The Mueller-Hinton agar plates were used for the assessment of the zone of inhibition. At first, an aliquot of 25 ml of sterilized media was poured into a sterilized Petri plate; after solidification, the microbial suspension was spread over the concerning agar medium and followed to develop a well of 6 mm diameter using a sterilized cork borer. Then, each well was loaded with 80µl of test samples at concentrations of 100µg/ml for the ZI assessment. Afterward, those synthesized compounds were diluted at varying concentrations viz., 6.25, 12.5, 25, 50 µg/ml, and 100 µg/ml for the determination of MIC-assay. Then, each fractionated entity was further evaluated in a 96-plate for the determination of the rate of bacterial inhibitory efficacy.

Compound	E.	coli	S. aureus				
Code	ZI (mm)	MIC (µg/ml)	ZI (mm)	MIC (µg/ml)			
17a	15	12.5	14	12.5			
17b	14	12.5	20	50			
17c	15	12.5	14	12.5			
17d	14	25	14	12.5			
17e	12	25	12	50			
17f	16	12.5	15	12.5			
17g	12	50	12	50			
17h	20	25	12	50			
17i	14	25	20	25			
17j	20	25	20	25			
17k	14	25	20	25			
171	12	50	11	50			
17m	20	50	20	50			
17n	14	12.5	14	12.5			
170	14	25	14	25			
17p	16	12.5	15	12.5			
17q	14	12.5	14	12.5			
17r	20	25	20	50			
17s	14	25	20	50			
17t	17	6.25	16	12.5			
Standard*	20	6.25	20	12.5			
ZI: Zone of	Inhibition, MIC:	Minimum Inhib	itory Concentration	, *Standard Drug			
Gentamicin							

Table S2. Antimicrobial activities of diversely substituted 3-nitro-2H-chromene-based

heteroaromatic thiols