Supplementary Materials for

Intrinsic auxeticity and mechanical anisotropy of Si₉C₁₅ siligraphene

Jianli Zhou^{||}, Jian Li^{||}, Jin Zhang^{*}

School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China

Contributed equally.

*Corresponding author. E-mail address: jinzhang@hit.edu.cn (J. Zhang).

	<i>C</i> ₁₁ (GPa)	<i>C</i> ₂₂ (GPa)	C_{12} (GPa)	<i>C</i> ₆₆ (GPa)
Nonplanar	275.43	264.66	-160.24	141.14
Planar	488.42	488.28	151.00	167.46

Tab. S1. Elastic constants of nonplanar and planar Si₉C₁₅ siligraphene

Tab. S2. A comparison among negative Poisson's ratios of the present Si_9C_{15} siligraphene and some other 2D materials. Here, results of defective graphene, graphene oxide and hydrogenated graphene listed here are the most negative values.

Material	Poisson's ratio	
Pristine graphene ^a	-0.07	
Defective graphene ^b	-0.3	
Graphene oxide ^c	-0.567	
Hydrogenated graphene ^d	-0.04	
Monolayer Si ₉ C ₁₅ (present)	-0.12~-0.38	

^aRef. [S1]; ^bRef. [S2]; ^cRef. [S3]; ^dRef. [S4].

Fig. S1. Phonon dispersion of monolayer Si_9C_{15} .

Fig. S2. Band structures of monolayer Si_9C_{15} (a) without strain and with strains of (b) 5% and (c) 10% in the *y* (or AC) direction.

Fig. S3. The fractured structures of Si_9C_{15} siligraphene stretched in (a) *x* and (b) *y* directions.

References

[S1] K. V. Zakharchenko, M. I. Katsnelson, A. Fasolino, Finite temperature lattice properties of graphene beyond the quasiharmonic approximation, Phys. Rev. Lett. 102 (2009) 046808.

[S2] J. N. Grima, S. Winczewski, L. Mizzi, M. C. Grech, R. Cauchi, R. Gatt, D. Attard, K. W.

Wojciechowski, J. Rybicki, Tailoring graphene to achieve negative Poisson's ratio properties, Adv. Mater. 27 (2015) 1455-1459.

[S3] J. Wan, J.-W. Jiang, H. S. Park, Negative Poisson's ratio in graphene oxide, Nanoscale 9 (2017) 4007-4012.

[S4] J. W. Jiang, T. Chang, X. Guo, Tunable negative Poisson's ratio in hydrogenated graphene, Nanoscale 8 (2016) 15948-15953.