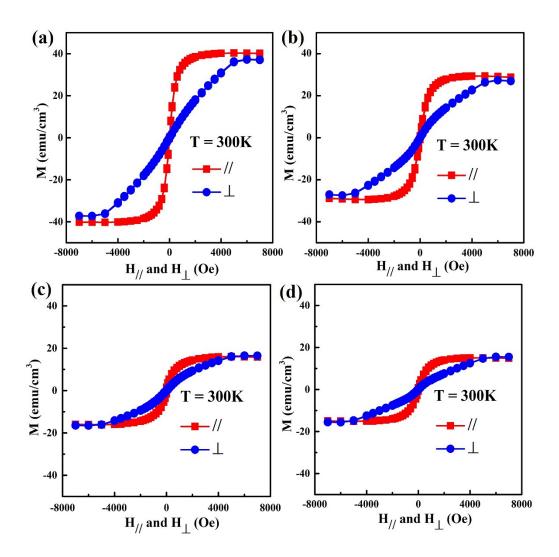

Supporting Information

Large-scale Fabrication and Mo Vacancy-induced Robust Roomtemperature Ferromagnetism of MoSe₂ Thin Films


Jing Zhong, ^a Xi Zhang, ^a Wa He, ^b Dan Gong, ^a Mu Lan, ^c Xu Dai, ^a Yong Peng, ^b Gang Xiang *a

- ^a College of Physics, Sichuan University, Chengdu 610064, China
- ^b College of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
- ^c College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China

*Corresponding emails: gxiang@scu.edu.cn (G.X.)

Fig. S1. SEM characterizations of the MoSe₂ thin films prepared at different temperatures. (a-d) The high-resolution top-view SEM images of the MoSe₂ thin films prepared at 770 °C (Z1), 800 °C (Z2), 850 °C (Z3) and 900 °C (Z4), respectively. (a) Z1, (b)Z2 and (c) Z3 all exhibit highly uniform smooth surface, while (d) Z4 displays evenly-distributed small willow leaf-like structures on the surface.

Fig. S2. Magnetic anisotropy of the $MoSe_2$ thin films prepared at different temperatures. (a-d) The M - H curves of Z1, Z2, Z3, and Z4 with $H_{//}$ and H_{\perp} applied at 300 K, respectively, indicating that the magnetic anisotropy exists and the c-axis is the easy magnetization direction in the all the samples.