Supporting Information

A High Responsivity, High Detectivity and High Response Speed MSM

UVB Photodetector based on SnO₂ Microwires

Rongpeng Fu[†]^a, Xue Jiang[†]^a, Yuefei Wang^a, Danyang Xia^a, Bingsheng Li^{a,*}, Jiangang Ma^a, Haiyang Xu^a,

Aidong Shen^b, Yichun Liu^a

^aKey Laboratory of UV Light Emitting Materials and Technology Under Ministry of Education, Northeast

Normal University, Changchun 130024, P. R. China

^bDepartment of Electrical Engineering, The City College of New York, New York 10031, USA

Corresponding Authors

*E-mail: libs@nenu.edu.cn

[†]These authors contributed equally to this work.

S1 Comparisons between the fabricated SnO_2 MWs in this work and other previous reports

Tab. S1 shows the comparison of the device performance parameters for this work and some previous reports. Similar with the junction type devices, the SnO₂ MW in this work also shows relatively low dark current and response time, which is attributed to the relatively high crystal quality and small amount of oxygen vacancies existed inside the material. While different with the reported junction type devices, SnO₂ MW in this work shows higher responsivity and specific detectivity, which can be attributed to the excellent performance of carrier generation and transportation.

Material	Bias	Dark current	Responsivity	Detectivity	Response time	Ref.
	v	A	A·W ^{−1}	Jones	S	
SnO ₂ /CsPbBr ₃	3	1.0×10 ⁻¹⁰	2.0	1.2×10 ¹³	1.94×10 ⁻³	1
SnO ₂	3	1.0×10 ⁻⁹			1.0	2
β -Ga ₂ O ₃ /SnO ₂	2	2.0×10 ⁻⁹			28.0	3
SnO ₂ /p-GaN	-3	1.6×10 ⁻⁸	1.45	1.31×10 ¹³	0.51	4
PEDOT:PSS/SnO ₂	-10	1.1×10 ⁻⁴	1.8×10 ⁻³			5
SnO ₂ /p-InGaN	0		0.1	3.5×10 ¹²	0.5	6
				(-0.1 V)		
SnO ₂	10	3.69×10 ⁻⁹	1.353×10 ³	5.4×10 ¹⁴	< 8.0×10 ⁻²	This
(322 nm,						work
0.25 μW/cm²)						

Tab. S1 Con	nparisons between	the fabricated SnO-	MWs in this work	and other	previous re	ports.
100.01 001	ipulisons secween	the fubricated sho		und other	previousre	poi cs.

S2 The absorption spectrum of single SnO₂ MW

Fig. S1 Absorption spectrum of single SnO2 MW

S3 The element content and distribution of SnO₂ MWs

Fig. S2 (a) The SEM image of SnO_2 MWs; (b) the measured distribution spectrum of elements; (c - d) the measured element mappings of O and Sn elements in SnO_2 MWs.

References

1 Y. Zhang, W. Xu, X. Xu, J. Cai, W. Yang and X. Fang, J. Phys. Chem. Lett., 2019, 10, 836-841.

2 J. Cai, X. Xu, L. Su, W. Yang, H. Chen, Y. Zhang and X. Fang, Adv. Opt. Mater., 2018, 6, 1800213.

3 K. Liu, M. Sakurai and M. Aono, J. Mater. Chem., 2012, 22, 12882-12887.

- 4 T. Xu, M. Jiang, P. Wan, K. Tang, D. Shi and C. Kan, *Photonics Res.*, 2021, 9, 2475-2485.
- 5 S. Li, S. Wang, K. Liu, N. Zhang, Z. Zhong, H. Long and G. Fang, *Appl. Phys. A*, 2015, 119, 1561-1566.
- 6 Y. Zhang, T. Xu, K. Chang, S. Cao, P. Wan, D. Shi, C. Kan and M. Jiang, *Results Phys.*, 2022, 42, 105995.