Supporting Information

Piezo-phototronic effect regulated broadband photoresponse of a-Ga₂O₃/ZnO heterojunction

Jiantao Wang,^a Yan Zhou,^a Zihan Wang,^a Boying Wang,^a Yongqiu Li,^a Banghao Wu,^a Chunlin Hao,^a Yaju Zhang,^{*a} Haiwu Zheng^{*a}

^a Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.

*Correspondence to: Y. J. Zhang (40070002@vip.henu.edu.cn), H. W. Zheng (zhenghaiw@ustc.edu).

Fig. S1 XRD patterns of (a) a-Ga₂O₃ and (b) ZnO films. (c) The top view SEM image of the ZnO film. (d) Room-temperature Raman spectrum of ZnO film. (e) The absorption spectra of as-grown (unannealed) Ga_2O_3 and annealed sample. (f) The absorption spectra of as-grown (unannealed) ZnO and annealed sample.

Fig. S2 The dark J-V curves of the (a) a-Ga₂O₃ and (b) ZnO films under different strains. The insets are the schematics of the devices.

Fig. S3 The output photocurrent as a function of strain state under (a) 265, (b) 360, (c) 405, (d) 532, (e) 635, (f) 1060 nm illumination and 0.5 V bias

Table S1. A comparison of photoresponse properties for various Ga2O3 or ZnO-based heterojunction

Bias	Wavelength	R [A/W]	D* [Jones]	Refs
[V]	[nm]			
	265	7.27	2.83×10 ¹¹	
	360	2.10	8.16×10 ¹⁰	
0.5	405	0.542	2.11×10^{10}	This work
0.5	532	0.150	5.84×10 ⁹	
	635	36.2×10 ⁻³	1.41×10 ⁹	
	1060	9.49×10 ⁻³	3.69×10 ⁸	
20	254	2.49	2.75×10 ¹³	1
20	365	0.27	1.97×10 ¹²	
0	266	7.97×10 ⁻³	1.16×10 ¹¹	2
10	240	0.447	2.26×10 ¹²	3
0	251	9.7×10 ⁻³	6.29×10 ¹²	4
1	380	4.00	1.74×10 ⁹	5
1	760	0.75	3.27×10 ⁸	<u> </u>
	Bias [V] 0.5 20 0 10 0 10	Bias Wavelength [V] [nm] 265 360 405 360 405 532 635 1060 20 254 365 365 0 266 10 240 0 251 380 380 1 380 760 760	Bias Wavelength R [A/W] [V] [nm] R [A/W] [V] 265 7.27 360 2.10 405 0.542 0.5 532 0.150 635 36.2×10 ⁻³ 1060 20 254 2.49 365 0.27 0 0 266 7.97×10 ⁻³ 10 240 0.447 0 251 9.7×10 ⁻³ 1 380 4.00 1 760 0.75	$\begin{array}{c c c c c c c } Bias & Wavelength \\ [V] & [nm] & & & & & & & & & & & & \\ P & [Jones] & & & & & & & & & \\ \hline & & & & & & & & &$

photodetectors.

Note S1: Calculation method of the strain values.

When an h_1 -thick film on an h_2 -thick substrate is bent to a radius r under external strain, the bending strain can be expressed as follow:⁶

$$\delta_{\max} \approx \left(\frac{h_1 + h_2}{r}\right)$$

In our study, the range of bending strain applied to $a-Ga_2O_3/ZnO$ heterojunction is calculated from 0.164% to -0.164%, which respectively represents the maximum tensile strain and compressive strain.

Note S2: The *I-V* curves of ZnO and a-Ga₂O₃ based devices under different strains.

To expound whether piezoresistive effect or piezotronic effect plays a dominant role in the a-Ga₂O₃/ZnO film heterojunction when external strains are applied, two pairs of ITO electrodes are deposited onto the a-Ga₂O₃ and ZnO film, respectively. The schematic structures of ITO/ZnO/ITO and ITO/a-Ga₂O₃/ITO devices are displayed in the inset of Fig. S2a and S2b, respectively. The almost linear dark *I*-V curves of the devices under different strains indicate that the ITO electrodes form Ohmic contacts with both a-Ga₂O₃ and ZnO film, and the piezoresistive effects have little impact on the resistance of the device from -0.164% compressive strain to 0.164% tensile strain. Therefore, the strain regulating *J-V* curves presented in Fig. 1(d) is mainly due to the effective adjustment by the piezoelectric polarization charges generated at the a-Ga₂O₃/ZnO hetero-interface.

References

- H. Wang, J. Ma, L. Cong, H. Zhou, P. Li, L. Fei, B. Li, H. Xu, and Y. Liu, *Mater. Today Phys.* 2021, 20, 100464.
- 2. D. Ni, Y. Wang, A. Li, L. Huang, H. Tang, B. Liu, and C. Cheng, *Nanoscale* 2022, 14, 3159.
- 3. Q. Qu, Q. Liu, L. Chen, Y. Li, H. Pan, J. Chen, M. Li, Y.Lu, and Y. He, *Appl. Phys. Lett.* 2022, **120**, 122108 (2022).
- 4. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, *Adv. Funct. Mater.* 2017, **27**, 1700264.
- 5. T. Gao, Q. Zhang, J. Chen, X. Xiong, and T. Zhai, Adv. Opt. Mater. 2017, 5, 1700206.
- 6. Y. Yang, G. Yuan, Z. Yan, Y. Wang, X. Lu, and J. M. Liu, Adv. Mater. 2017, 29, 1700425.