Electronic Supplementary Information (ESI)

Effective modulation of the exotic properties of two-dimensional multifunctional $TM_2@g-C_4N_3$ monolayers via transition metal permutation and biaxial strain

De-Bing Long,¹ Yulin Feng,² Guoying Gao,³ and Li-Ming Yang^{1*}

¹Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. (email: Lmyang@hust.edu.cn)

²College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China. ³School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Table of Contents:

(1) Test of different U_{eff} values for magnetic ground states (MGS) and local magnetic moments M of TM atoms in TM₂@g-C₄N₃ monolayers

1. The comparison of magnetic ground states (MGS) and local magnetic moments M (μ_B/TM) of

TM atoms obtained at $U_{\text{eff}} = 3 \text{ eV}$ and other different U_{eff} values (2, 2.5, 3.5, 4 eV): Table S1

(2) Stepwise high-throughput screening together with viability analysis and stability evaluation for 210 candidates

1. Initial and final geometric structures before and after fully structural relaxation of the seven adsorption configurations: Fig. S1

2. Calculated cohesive energies of 30 TM atoms and binding energies for $TM_2@g-C_4N_3$ monolayers in form of model-3 and model-5: Table S2

3. Evolution of the total energy and temperature versus the simulation time during AIMD simulations for asymmetrical adsorbed $TM_2@g-C_4N_3$ monolayers: Figs. S2–S7

4. Evolution of the total energy and temperature versus the simulation time during AIMD for symmetrical adsorbed $TM_2@g-C_4N_3$ monolayers: Figs. S8–S10

5. Phonon dispersion spectra for $Co_2@$ and $Zr_2@g-C4N_3$ monolayers under biaxial strains from -14% to 12%: Figs. S11–S12

(3) Crystal structure information of 18 stable TM2@g-C4N3 monolayers

1. The crystal structures, space groups, lattice parameters (Å), and magnetic moments (total and TM, μ_B) of optimized 18 TM₂@g-C₄N₃ monolayers: Table S3

(4) Magnetic properties

1. Spin densities of the remaining 10 magnetic TM₂@g-C₄N₃ monolayers: Fig. S13

2. Exchange energies E_{ex} ($E_{\text{ex}} = E_{\text{AFM}} - E_{\text{FM}}$, meV) and parameters (J_i , meV) per supercell, and Curie/Néel temperatures of 13 magnetic TM@g-C₄N₃ monolayers obtained from Monte Carlo simulations: Table S4

3. Schematic diagrams of three different magnetic ordering configurations in 2D $g-C_4N_3$ monolayer: Fig. S14

4. Comparison of collinear and non-collinear spin-polarized calculation results of pristine $g-C_4N_3$ and $Re_2@g-C_4N_3$ monolayers: Tables S5–S6

5. The calculated energy per transition metal atom along different magnetization orientations relative to the total energy with magnetization orientation parallel to easy axis (EA) and magnetic anisotropic energy (MAE) for $TM_2@g-C_4N_3$ monolayers: Table S7

6. Exchange energies and parameters per supercell, average magnetic moment per TM atom, and Curie/Néel temperatures under biaxial strains from -10% (-14%) to 10% for four representative materials: Table S8

7. Evolution of calculated Bader charges on TM atoms and $g-C_4N_3$ moiety of four representative materials versus biaxial strains from -10% (-14%) to 10%: Fig. S15

(5) Electronic properties

1. Calculated PBE+U and HSE06 band structures of the remaining 15 $TM_2@g-C_4N_3$ monolayers: Figs. S16–S17

2. Band gap values of $TM_2@g-C_4N_3$ monolayers calculated at PBE+U and HSE06 levels: Table S9

3. Charge density difference of the remaining 15 TM2@g-C4N3 monolayers: Fig. S18

4. The evolution of PDOS of different atoms near the Fermi level versus biaxial strains from -10% (-14%) to 10% for four representative materials: Figs. S19–S22

(6) Optical properties

1. The evolution of optical absorption coefficient versus biaxial strains for $Co_2@$ and $Zr_2@g-C_4N_3$ monolayers: Figs. S23–S24

(1) Test of different U_{eff} values for magnetic ground states (MGS) and local magnetic moments M of TM atoms in TM₂@g-C₄N₃ monolayers

Table S1 The comparison of magnetic ground states (MGS) and local magnetic moments M (μ_B /TM) of TM atoms obtained at $U_{eff} = 3 \text{ eV}$ and other different U_{eff} values (2, 2.5, 3.5, 4 eV).

	$U_{ m eff}$	= 2	$U_{\rm eff}$ =	2.5	$U_{\rm eff}=3$		$U_{\rm eff} = 3.5$		$U_{\rm eff} = 4$	
$IM_2@g-C_4N_3$	MGS	М	MGS	М	MGS	М	MGS	М	MGS	М
Sc	AFM2	0.23	AFM2	0.24	AFM2	0.26	AFM2	0.27	AFM2	0.29
V	AFM2	2.90	AFM2	2.92	AFM2	2.95	AFM2	2.96	AFM2	2.98
Mn	AFM2	4.64	AFM2	4.66	AFM2	4.69	AFM2	4.72	AFM2	4.74
Co	FM	1.79	FM	1.81	FM	1.84	FM	1.84	FM	1.85
Ni	AFM2	0.89	AFM2	0.90	AFM2	0.92	AFM2	0.93	AFM2	0.94
Zn	NM	0	NM	0	NM	0	NM	0	NM	0
Y	NM	0	NM	0	NM	0	NM	0	NM	0
Zr	FM	0.40	FM	0.41	FM	0.43	FM	0.43	FM	0.44
Ru	AFM1	2.45	AFM1	2.48	AFM1	2.54	AFM1	2.57	AFM1	2.61
Rh	AFM1	1.43	AFM1	1.47	AFM1	1.52	AFM1	1.56	AFM1	1.59
Pd	AFM2	0.66	AFM2	0.69	AFM2	0.71	AFM2	0.73	AFM2	0.75
Cd	NM	0	NM	0	NM	0	NM	0	NM	0
Lu	NM	0	NM	0	NM	0	NM	0	NM	0
Hf	NM	0	NM	0	NM	0	NM	0	NM	0
Re	AFM1	4.94	AFM1	4.97	AFM1	5.04	AFM1	5.08	AFM1	5.11
Os	AFM1	3.54	AFM1	3.56	AFM1	3.62	AFM1	3.67	AFM1	3.69
Ir	AFM1	1.30	AFM1	1.34	AFM1	1.38	AFM1	1.42	AFM1	1.46
Pt	AFM1	0.66	AFM1	0.68	AFM1	0.70	AFM1	0.72	AFM1	0.74

(2) Stepwise high-throughput screening together with viability analysis and stability evaluation for 210 candidates

Fig. S1. Initial and final geometric structures before and after fully structural relaxation of the seven adsorption configurations.

Table S2 Calculated cohesive energies (E_c) of TM bulk and binding energies (E_b) of the TM atoms embedded in the g-C₄N₃ substrate in form of model-3 and model-5 as well as the calculated values of $E_b + E_c$. The experimental values of E_c are just for reference.

	$E_{\rm c}$ (eV	/atom)	$E_{\rm b}$ (eV	/atom)	$E_{\rm b}+E_{\rm c}$ (eV/atom)
TM	calc.	expt. ^{a)}	model-3	model-5	model-3	model-5
Sc	4.36	3.90	-3.41	-4.68	0.95	-0.31
Ti	5.50	4.90	-3.40	-4.68	2.09	0.81
V	5.40	5.30	-3.85	-5.45	1.55	-0.05
Cr	4.05	4.10	-2.04	-3.23	2.01	0.82
Mn	3.29	2.90	-2.24	-3.61	1.05	-0.32
Fe	4.63	4.30	-2.39	-3.86	2.24	0.77
Co	5.09	4.40	-2.83	-6.12	2.26	-1.02
Ni	4.74	4.40	-3.64	-5.30	1.11	-0.56
Cu	3.49	3.50	-2.10	-2.78	1.39	0.71
Zn	1.17	1.40	-0.53	-1.77	0.64	-0.60
Y	4.28	4.40	-4.59	-6.03	-0.31	-1.75
Zr	6.27	6.30	-4.60	-6.61	1.67	-0.34
Nb	7.02	7.60	-4.99	-5.18	2.04	1.84
Mo	6.36	6.80	-4.34	-5.76	2.02	0.60
Tc	7.07	6.90	-4.72	-7.01	2.36	0.06
Ru	7.03	6.70	-5.46	-7.76	1.57	-0.73
Rh	5.98	5.80	-3.41	-6.28	2.57	-0.30
Pd	3.74	3.90	-1.74	-3.83	2.01	-0.09
Ag	2.82	3.00	-1.33	-2.38	1.49	0.44
Cd	0.94	1.20	-0.42	-1.12	0.51	-0.19
Lu	4.32	4.43	-4.28	-6.00	0.04	-1.68
Hf	6.79	6.40	-4.76	-7.00	2.03	-0.21
Та	8.47	8.10	-5.37	-7.43	3.11	1.04
W	8.49	8.90	-5.46	-7.30	3.03	1.19
Re	7.82	8.00	-4.96	-7.85	2.86	-0.04
Os	8.43	8.20	-5.40	-8.71	3.03	-0.28
Ir	7.56	6.90	-5.22	-7.77	2.35	-0.21
Pt	5.72	5.80	-2.77	-5.82	2.95	-0.10
Au	3.46	3.80	-1.31	-1.81	2.15	1.65
Hg	0.58	0.70	-0.34	-0.38	0.24	0.20

^{a)} Kittel, C., Introduction to solid state physics. Wiley: 2005.

Fig. S2 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) $Sc_2@$, (b) $V_2@$, and (c) $Mn_2@g-C_4N_3$ monolayers at 300, 600, and 600 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S3 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) $Co_2@$, (b) $Ni_2@$, and (c) $Zn_2@g-C_4N_3$ monolayers at 600, 600, and 300 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S4 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) $Y_2@$, (b) $Zr_2@$, and (c) $Ru_2@g-C_4N_3$ monolayers at 300, 600, and 600 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S5 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) $Rh_2@$, (b) $Pd_2@$, and (c) $Cd_2@g-C_4N_3$ monolayers at 300, 300, and 300 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S6 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) Lu₂@, (b) Hf₂@, and (c) Re₂@g-C₄N₃ monolayers at 300, 300, and 600 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S7 Snapshots of the initial and final frames of AIMD simulations for asymmetrical adsorbed (a) $Os_2@$, (b) $Ir_2@$, and (c) $Pt_2@g-C_4N_3$ monolayers at 300, 300, and 600 K, respectively. (a')–(c') are evolutions of the total energy and temperature versus the simulation time during AIMD simulations in (a)–(c).

Fig. S8 Snapshots of the initial and final frames of AIMD simulations for symmetrical adsorbed (a) Mn₂@, (b) Fe₂@, (c) Co₂@, (d) Ni₂@, (e) Cu₂@, and (f) Zn₂@g-C₄N₃ monolayers at 300 K.

Fig. S9 Snapshots of the initial and final frames of AIMD simulations for symmetrical adsorbed (a) Y₂@, (b) Zr₂@, (c) Tc₂@, (d) Ru₂@, (e) Rh₂@, and (f) Pd₂@g-C₄N₃ monolayers at 300 K.

Fig. S10 Snapshots of the initial and final frames of AIMD simulations for symmetrical adsorbed (a) Lu₂@, (b) Hf₂@, (c) Re₂@, (d) Ir₂@, (e) Pt₂@, and (f) Au₂@g-C₄N₃ monolayers at 300 K.

Fig. S11 Phonon dispersion spectra for $Co_2@g-C_4N_3$ monolayers under biaxial strains from -14% to 12%. The red color lines show the negative frequency (instability) at critical strains (-14%, -13% and 12%), the stable interval of strain of phonon spectra is $-12\% \sim 11\%$.

Fig. S12 Phonon dispersion spectra for $Zr_2@g-C_4N_3$ monolayers under biaxial strains from -14% to 12%. The red color lines show the negative frequency (instability) at critical strains (-14%, -13% and 12%), the stable interval of strain of phonon spectra is $-12\% \sim 11\%$.

(3) Crystal structure information of 18 stable TM₂@g-C₄N₃ monolayers

Table S3 The magnetic ground states (MGS), crystal structures, space groups, lattice parameters (Å), total magnetic moment per supercell (M_{tot} , μ_B), individual magnetic moment (M_{TM} , μ_B) of the TM atoms, and the distance between two TM atoms (d_{TM-TM} , Å) including nearest neighbor d1 and next-nearest neighbor d2, TM-N and C-N bond lengths (R_{TM-N} and R_{C-N} , Å) for the optimized 18 TM₂@g-C₄N₃ monolayers in 2 × 2 × 1 supercells.

$TM_2@g-C_4N_3$	MGS	Crystal structure	Space group	Lattice parameters	$M_{ m tot}$	$M_{ m TM}$	$d_{\mathrm{TM-TM}}$	$R_{ m TM-N}$	R _{C-N}
Sc ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.70 b = 9.70 c = 15.51	0	Sc1: 0.26 Sc2: -0.26 Sc3: 0.26 Sc4: -0.26	<i>d</i> 1: 4.87 <i>d</i> 2: 6.13	2.10	1.34 1.39 1.40
V ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.70 b = 9.70 c = 15.54	0	V1: 2.95 V2: -2.95 V3: 2.95 V4: -2.95	<i>d</i> 1: 4.89 <i>d</i> 2: 6.02	2.06	1.34 1.37 1.39
Mn ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.69 b = 9.69 c = 15.59	0	Mn1: 4.69 Mn2: -4.69 Mn3: 4.69 Mn4: -4.69	<i>d</i> 1: 4.90 <i>d</i> 2: 6.10	2.12	1.34 1.37 1.38

Co ₂ @g-C ₄ N ₃	FM	top view	<i>P</i> 3m1 (No. 156)	a = 9.73 b = 9.73 c = 15.54	8.00	Co1: 1.84 Co2: 1.84 Co3: 1.84 Co4: 1.84	d1: 4.93 d2: 5.71	1.90	1.35 1.37 1.38
Ni ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.65 b = 9.65 c = 15.62	0	Ni1: 0.92 Ni2: -0.92 Ni3: 0.92 Ni4: -0.92	<i>d</i> 1: 4.90 <i>d</i> 2: 5.52	1.86	1.34 1.35 1.38
Zn ₂ @g-C ₄ N ₃	NM	top view	<i>P</i> 3m1 (No. 156)	a = 9.71 b = 9.71 c = 15.53	0	0	d1: 4.91 d2: 5.89	2.02	1.35 1.36 1.37
Y ₂ @g-C ₄ N ₃	NM	top view	<i>P</i> 3m1 (No. 156)	a = 9.68 b = 9.68 c = 15.55	0	0	d1: 4.85 d2: 6.42	2.30	1.34 1.38 1.39
Zr ₂ @g-C ₄ N ₃	FM	top view side view	<i>P</i> 3m1 (No. 156)	a = 9.05 b = 9.05 c = 18.66	4.00	Zr1: 0.58 Zr2: 0.27 Zr3: 0.58 Zr4: 0.27	<i>d</i> 1: 4.80 <i>d</i> 2: 6.28	2.05	1.35 1.38 1.46

Ru ₂ @g-C ₄ N ₃	AFM1	top view	<i>P</i> 3m1 (No. 156)	a = 9.56 b = 9.56 c = 15.92	0	Ru1: 2.54 Ru2: 2.54 Ru3: -2.54 Ru4: -2.54	<i>d</i> 1: 4.79 <i>d</i> 2: 5.86	2.15	1.35 1.37 1.40
Rh ₂ @g-C ₄ N ₃	AFM1	top view	<i>P</i> 3m1 (No. 156)	a = 9.67 b = 9.67 c = 15.71	0	Rh1: 1.52 Rh2: 1.52 Rh3: -1.52 Rh4: -1.52	<i>d</i> 1: 4.90 <i>d</i> 2: 6.11	2.11	1.34 1.36 1.38
Pd ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.59 b = 9.59 c = 16.00	0	Pd1: 0.71 Pd2: -0.71 Pd3: 0.71 Pd4: -0.71	<i>d</i> 1: 4.80 <i>d</i> 2: 6.19	2.09	1.34 1.35 1.38
Cd ₂ @g-C ₄ N ₃	NM	top view	<i>P</i> 3m1 (No. 156)	a = 9.64 b = 9.64 c = 15.76	0	0	<i>d</i> 1: 4.88 <i>d</i> 2: 6.48	2.36	1.34 1.36 1.37
Lu ₂ @g-C ₄ N ₃	NM	top view	<i>P</i> 3m1 (No. 156)	a = 9.67 b = 9.67 c = 15.59	0	0	<i>d</i> 1: 4.86 <i>d</i> 2: 6.42	2.30	1.34 1.37 1.38

Hf ₂ @g-C ₄ N ₃	NM	top view	<i>P</i> 3m1 (No. 156)	a = 9.72 b = 9.72 c = 15.38	0	0	<i>d</i> 1: 4.86 <i>d</i> 2: 6.01	2.15	1.34 1.38 1.40
Re ₂ @g-C ₄ N ₃	AFM1	top view	<i>P</i> 3m1 (No. 156)	a = 9.65 b = 9.65 c = 15.71	0	Re1: 5.04 Re2: 5.04 Re3: -5.04 Re4: -5.04	<i>d</i> 1: 4.88 <i>d</i> 2: 6.48	2.33	1.35 1.36 1.37
Os ₂ @g-C ₄ N ₃	AFM1	top view	<i>P</i> 3m1 (No. 156)	a = 9.67 b = 9.67 c = 15.67	0	Os1: 3.62 Os2: 3.62 Os3: -3.62 Os4: -3.62	<i>d</i> 1: 4.88 <i>d</i> 2: 6.36	2.30	1.35 1.36 1.37
Ir ₂ @g-C ₄ N ₃	AFM1	top view	<i>P</i> 3m1 (No. 156)	a = 9.68 b = 9.68 c = 15.69	0	Ir1: 1.38 Ir2: 1.38 Ir3: -1.38 Ir4: -1.38	d1: 4.88 d2: 6.02	2.10	1.35 1.36 1.38
Pt ₂ @g-C ₄ N ₃	AFM2	top view	<i>P</i> 3m1 (No. 156)	a = 9.47 b = 9.47 c = 16.07	0	Pt1: 0.70 Pt2: -0.70 Pt3: 0.70 Pt4: -0.70	<i>d</i> 1: 4.79 <i>d</i> 2: 6.13	2.06	1.33 1.35 1.39

(4) Magnetic properties

Fig. S13 Top and side views of the spin densities ($\Delta \rho = \rho_{\uparrow} - \rho_{\downarrow}$) for 2D periodic (a) Sc₂@, (b) V₂@, (c) Ni₂@, (d) Ru₂@, (e) Rh₂@, (f) Pd₂@, (g) Re₂@, (h) Os₂@, (i) Ir₂@, and (j) Pt₂@g-C₄N₃ monolayers in 2 × 2 × 1 supercells at an isosurface value of 0.03 e Å⁻³.

Structures	$E_{\rm AFM1} - E_{\rm FM}$	$E_{\rm AFM2} - E_{\rm FM}$	J_1	J_2	$T_{\rm C}/T_{\rm N}$
g-C ₄ N ₃	741.940	770.760	685.974	660.324	295
$Sc_2@g-C_4N_3$	112.310	-13.430	245.854	-13.870	9.5
$V_2@g-C_4N_3$	158.630	-35.620	2.482	-0.251	13
$Mn_2@g-C_4N_3$	-11.360	-67.920	0.128	-0.193	49
$Co_2@g-C_4N_3$	8.110	46.090	-0.561	0.866	8.5
$Ni_2@g-C_4N_3$	-1.480	-1.720	-0.092	-0.128	< 5
$Zr_2@g-C_4N_3$	99.260	24.240	60.589	8.427	41.5
$Ru_2@g-C_4N_3$	-378.330	-41.320	-6.838	-0.395	< 5
$Rh_2@g-C_4N_3$	-126.030	-31.580	-5.562	-0.797	< 5
$Pd_2@g-C_4N_3$	-57.860	-59.600	-6.673	-7.087	24
$Re_2@g-C_4N_3$	-225.380	-101.080	-0.841	-0.243	< 5
$Os_2@g-C_4N_3$	-229.710	-137.640	-1.484	-0.635	< 5
$Ir_2@g-C_4N_3$	-51.290	-4.640	-2.920	-0.138	< 5
$Pt_2@g-C_4N_3$	-0.860	-55.260	6.314	-6.517	22.5

Table S4 Exchange energies E_{ex} ($E_{ex} = E_{AFM} - E_{FM}$, meV) and parameters (J_i , meV) per supercell, and Curie/Néel temperatures (T_C/T_N , K) of pristine g-C₄N₃ monolayer and 13 magnetic TM₂@g-C₄N₃ monolayers obtained from Monte Carlo (MC) simulations.

Fig. S14 Schematic diagrams for different magnetic ordering configurations in 2D g-C₄N₃ monolayer. (a) ferromagnetic (FM), (b) antiferromagnetic-1 (AFM1), and (c) antiferromagnetic-2 (AFM2). Blue balls are N atoms, and the arrows indicate the spin directions of the N atoms. The nearest (J_1) and second-nearest (J_2) exchange interactions are indicated by magenta and green dotted lines, respectively.

$$E(FM) = E_0 - 12J_1M^2 - 12J_2M^2$$
(1)

$$E(\text{AFM1}) = E_0 - 12J_1M^2 + 4J_2M^2$$
(2)

$$E(\text{AFM2}) = E_0 + 4J_1 M^2 - 12J_2 M^2$$
(3)

$$J_{1} = \frac{E(AFM2) - E(FM)}{16M^{2}}$$
(4)

$$J_2 = \frac{E(\text{AFM1}) - E(\text{FM})}{16M^2}$$
(5)

 Table S5 Comparison of collinear and non-collinear spin-polarized calculation results of pristine

$g-C_4N_3$	monolayer.
------------	------------

Collinear spin-polarized calculation									
Magnetic	Before optimization	After optimization	Magnetic	Total	Relative				
configuration	Before optimization	Arter optimization	moments ($\mu_{\rm B}$)	energies (eV)	energy (eV)				
			N1: 0.265						
			N2: 0.265						
			N3: 0.254						
			N4: 0.254						
			N5: 0.276						
EM	(A A A A A A A A A A A A A A A A A A A	At a a tag	N6: 0.276	226 04002	0				
ΓIVI			N7: 0.265	-230.04093	0				
			N8: 0.265						
		·	N9: 0.254						
			N10: 0.254						
			N11: 0.276						
			N12: 0.276						
			N1: 0.171						
			N2: -0.171						
			N3: 0.141						
			N4: -0.141						
			N5: -0.026						
	A A A A A A A A A A A A A A A A A A A	(a a a a a a a a a a a a a a a a a a a	N6: 0.026	225 75510	0.286				
AFMI			N7: -0.171	-255.75519	0.280				
	A A A A		N8: 0.171						
			N9: -0.141						
			N10: 0.141						
			N11: 0.026						
			N12: -0.026						
			N1: 0.156						
			N2: -0.156						
			N3: 0.156						
			N4: -0.156						
			N5: -0.027						
	(apapap)	A A A A A A A A A A A A A A A A A A A	N6: 0.027	225 75524	0.296				
AFM2			N7: -0.156	-235./5534	0.286				
	4444		N8: 0.156						
			N9: -0.156						
			N10: 0.156						
			N11: 0.027						
			N12: -0.027						
	Non	-collinear spin-polarized of	calculation						
Magnetic			Magnetic	Total	Relative				
configuration	Before optimization	After optimization	moments ($\mu_{\rm B}$)	energies (eV)	energy (eV)				

			N1. 0.265		
			N1: 0.205		
			N2: 0.203		
			NJ: 0.205		
			N4: 0.203		
	ata ata	ata ata	N5: 0.265		
FM			N6: 0.265	-236.04339	0
		Led Led	N/: 0.265		
	/ A A A O	(A & A &)	N8: 0.265		
			N9: 0.265		
			N10: 0.265		
			N11: 0.265		
			N12: 0.265		
			N1: 0.174		
			N2: -0.174		
			N3: 0.231		
			N4: -0.231		
			N5: 0.231		
AFM1		/ martine /	N6: -0.231	_235 30145	0.742
			N7: 0.174	235.50145	0.742
	a a a	A A A A	N8: -0.174		
			N9: 0.231		
			N10: -0.231		
			N11: 0.231		
			N12: -0.231		
			N1: 0.214		
			N2: -0.214		
			N3: 0.214		
			N4: -0.214		
			N5: -0.136		
		a a a a a a	N6: 0.136	005 070 (0	0 771
AFM2			N7: -0.214	-235.27263	0.771
	aton to	at a day	N8: 0.214		
			N9: -0.214		
			N10: 0.214		
			N11: 0.136		
			N12: -0.136		

Table S6 Comparison of collinear and non-collinear spin-polarized calculation results of $Re_2@g-C_4N_3$ monolayer.

Collinear spin-polarized calculation									
Magnetic configuration	Before optimization	After optimization	Magnetic moments (μ_B)	Total energies (eV)	Relative energy (eV)				
FM			Re1: 5.098 Re2: 5.098 Re3: 5.098 Re4: 5.098	-262.20838	0				
AFM1			Re1: 5.036 Re2: 5.036 Re3: -5.036 Re4: -5.036	-262.43376	-0.225				
AFM2			Re1: 5.055 Re2: -5.055 Re3: 5.055 Re4: -5.055	-262.30946	-0.101				
	Not	n-collinear spin-polarized	calculation						
Magnetic configuration	Before optimization	After optimization	Magnetic moments ($\mu_{\rm B}$)	Total energies (eV)	Relative energy (eV)				
FM			Re1: 5.095 Re2: 5.093	2/2 2115/					
			Re3: 5.097 Re4: 5.097	-262.21156	0				
AFM1			Re3: 5.097 Re4: 5.097 Re1: 5.037 Re2: 5.037 Re3: -5.036 Re4: -5.036	-262.21156	-0.224				

Table S7 The calculated energy per transition metal atom ($\mu eV/TM$) along different magnetization orientations relative to the total energy with magnetization orientation parallel to easy axis (EA) and magnetic anisotropic energy (MAE, $\mu eV/TM$) are summarized for $TM_2@g-C_4N_3$ monolayers. The relative energy of EA was set to be 0.

$TM_2@g-C_4N_3$	E[100]	E[010]	E[110]	E[001]	E[111]	EA	MAE
Sc	18	100	35	0	23	[001]	100
V	58	225	65	0	48	[001]	225
Mn	5	10	15	0	20	[001]	20
Co	35	10	8	0	33	[001]	35
Ni	180	123	130	0	178	[001]	180
Zr	773	778	290	0	788	[001]	788
Ru	175	623	113	0	490	[001]	623
Rh	820	95	323	0	815	[001]	820
Pd	213	15	0	218	198	[110]	218
Re	0	90	128	168	110	[100]	168
Os	150	150	0	333	183	[110]	333
Ir	158	0	333	140	145	[010]	333
Pt	1135	865	553	0	138	[001]	1135

$Co_2@g-C_4N_3$	-10%	-8%	-6%	-4%	-2%	0	2%	4%	6%	8%	10%
FM	-251.96133	-253.94852	-255.23548	-256.20703	-256.98581	-257.28596	-256.97594	-256.08339	-254.66385	-252.77745	-250.49203
AFM1	-251.64044	-253.46765	-254.85276	-255.96702	-256.97741	-257.27785	-256.96762	-256.07545	-254.65514	-252.76721	-250.48060
AFM2	-251.66054	-253.53066	-254.92820	-256.03649	-256.92616	-257.23987	-256.94647	-256.07238	-254.66958	-252.79570	-250.51702
$E_{ m AFM1}$ - $E_{ m FM}$	320.89	480.87	382.72	240.01	8.4	8.11	8.32	7.94	8.71	10.24	11.43
$E_{ m AFM2}$ - $E_{ m FM}$	300.79	417.86	307.28	170.54	59.65	46.09	29.47	11.01	-5.73	-18.25	-24.99
М	1.791	1.796	1.802	1.812	1.824	1.844	1.867	1.875	1.894	1.923	1.951
I	$J_1 = 6.062$	$J_1 = 10.597$	$J_1 = 8.877$	$J_1 = 5.957$	$J_1 = -0.816$	$J_1 = -0.561$	$J_1 = -0.236$	$J_1 = 0.087$	$J_1 = 0.403$	$J_1 = 0.655$	$J_1 = 0.786$
J	$J_2 = 5.347$	$J_2 = 8.142$	$J_2 = 5.954$	$J_2 = 3.282$	$J_2 = 1.136$	$J_2 = 0.866$	$J_2 = 0.542$	$J_2 = 0.197$	$J_2 = -0.100$	$J_2 = -0.309$	$J_2 = -0.410$
$T_{\rm C}/T_{\rm N}$	208	305	236	142	9	8.5	8	6	7	16.5	21.5

Table S8 Exchange energies E_{ex} ($E_{\text{ex}} = E_{\text{AFM}} - E_{\text{FM}}$, meV) and parameters (J_i , meV) per supercell, average magnetic moment M (μ_B) per TM atom,

and Curie/Néel temperatures (T _C /T _N , K) under biaxial strains from -10% (-14%) to 10% for Co ₂ @, Zr ₂ @, Mn ₂ @, and V ₂ @g-C ₄ N ₃ monolayers.											
$D_2@g-C_4N_3$	-10%	-8%	-6%	-4%	-2%	0	2%	4%	6%	8%	

$Zr_2@g-C_4N_3$	-14%	-12%	-10%	-8%	-6%	-4%	-2%	0	2%	4%	6%	8%	10%
FM	-250. 11052	-255. 82160	-258.57351	-261.27068	-263.26412	-264.68895	-265.52275	-265.78790	-265.52975	-264.80555	-263.68648	-262.340763	-260.93541
AFM1	-249. 58492	-255.01236	-257.72345	-260.68366	-263.02174	-264.55353	-265.40282	-265.68864	-265.45534	-264.75545	-263.67832	-262.33571	-260.83445
AFM2	-250. 10165	-255. 81481	-258.56191	-261.25587	-263.24120	-264.65982	-265.49586	-265.76366	-265.50498	-264.77630	-263.52231	-262.271783	-260.96364
$E_{\rm AFM1} - E_{\rm FM}$	525.600	809.24	850.06	587.02	242.38	135.42	119.93	99.26	74.41	50.1	8.16	5.053	100.96
$E_{\rm AFM2} - E_{\rm FM}$	8.87	6.79	11.6	14.81	22.92	29.13	26.89	24.24	24.77	29.25	164.17	68.98	-28.23
М	0.336	0.346	0.358	0.371	0.389	0.403	0.414	0.419	0.424	0.435	0.442	0.445	0.447
J	$J_1 = 544.168$	$J_1 = 892.243$	$J_1 = 823.418$	$J_1 = 526.383$	$J_1 = 190.753$	$J_1 = 93.018$	$J_1 = 77.660$	$J_1 = 60.589$	$J_1 = 40.973$	$J_1 = 22.393$	$J_1 = -46.247$	$J_1 = -20.959$	$J_1 = 73.629$
	$J_2 = 4.631$	$J_2 = 3.759$	$J_2 = 5.657$	$J_2 = 6.725$	$J_2 = 9.467$	$J_2 = 11.210$	$J_2 = 9.806$	$J_2 = 8.427$	$J_2 = 8.181$	$J_2 = 9.232$	$J_2 = 51.352$	$J_2 = 24.557$	$J_2 = -9.031$
$T_{\rm C}/T_{\rm N}$	100	245	205	135	75	54	49	41.5	34	28	10	5	8

$V_2@g-C_4N_3$	-10%	-8%	-6%	-4%	-2%	0	2%	4%	6%	8%	10%
FM	-258.63834	-260.51049	-262.71802	-264.33130	-265.32042	-265.65474	-265.31972	-264.33069	-262.73079	-260.74988	-258.33754
AFM1	-258.48512	-260.69137	-262.63669	-264.09302	-265.11713	-265.49611	-265.21029	-264.28558	-262.77152	-260.74545	-258.28633
AFM2	-258.61151	-260.68917	-262.83188	-264.40861	-265.37347	-265.69036	-265.34754	-264.36781	-262.83566	-260.83029	-258.36567
$E_{ m AFM1}$ - $E_{ m FM}$	153.22	-180.88	81.33	238.28	203.29	158.63	109.43	45.11	-40.73	4.43	51.21
$E_{ m AFM2}$ - $E_{ m FM}$	26.83	-178.68	-113.86	-77.31	-53.05	-35.62	-27.82	-37.12	-104.87	-80.41	-28.13
М	2.717	2.746	2.766	2.836	2.952	2.952	2.968	2.975	2.981	2.986	2.99
I	$J_1 = 2.318$	$J_1 = -1.313$	$J_1 = 1.953$	$J_1 = 3.883$	$J_1 = 3.213$	$J_1 = 2.482$	$J_1 = 1.750$	$J_1 = 0.913$	$J_1 = 0.182$	$J_1 = 0.729$	$J_1 = 1.105$
J	$J_2 = 0.222$	$J_2 = -1.282$	$J_2 = -0.804$	$J_2 = -0.542$	$J_2 = -0.371$	$J_2 = -0.251$	$J_2 = -0.197$	$J_2 = -0.266$	$J_2 = -0.815$	$J_2 = -0.657$	$J_2 = -0.238$
$T_{\rm C}/T_{\rm N}$	9	< 5	< 5	18.5	16	13	9	< 5	< 5	< 5	< 5

$Mn_2@g-C_4N_3$	-10%	-8%	-6%	-4%	-2%	0	2%	4%	6%	8%	10%
FM	-260.23556	-263.34844	-265.76293	-267.49225	-268.53199	-268.88016	-268.53572	-267.52249	-265.89266	-263.72717	-261.12919
AFM1	-260.45080	-263.51882	-265.90249	-267.59159	-268.58463	-268.89152	-268.52121	-267.49765	-265.87130	-263.72309	-261.15011
AFM2	-260.33062	-263.44773	-265.86508	-267.58480	-268.61087	-268.94808	-268.59936	-267.58277	-265.94491	-263.76152	-261.14104
$E_{ m AFM1}$ - $E_{ m FM}$	-215.24	-170.38	-139.56	-99.34	-52.64	-11.36	14.51	24.84	21.36	4.08	-20.92
$E_{ m AFM2}$ - $E_{ m FM}$	-95.06	-99.29	-102.15	-92.55	-78.88	-67.92	-63.64	-60.28	-52.25	-34.35	-11.85
М	4.604	4.63	4.648	4.663	4.678	4.691	4.706	4.723	4.742	4.761	4.769
T	$J_1 = -0.922$	$J_1 = -0.666$	$J_1 = -0.492$	$J_1 = -0.297$	$J_1 = -0.075$	$J_1 = 0.128$	$J_1 = 0.265$	$J_1 = 0.316$	$J_1 = 0.275$	$J_1 = 0.124$	$J_1 = -0.088$
J	$J_2 = -0.261$	$J_2 = -0.274$	$J_2 = -0.284$	$J_2 = -0.259$	$J_2 = -0.223$	$J_2 = -0.193$	$J_2 = -0.182$	$J_2 = -0.173$	$J_2 = -0.151$	$J_2 = -0.100$	$J_2 = -0.035$
$T_{ m N}$	< 5	< 5	< 5	< 5	24	49	49	50.5	44	25	24

Fig. 15 (a)–(d) are the evolutions of calculated Bader charges on TM atoms and $g-C_4N_3$ moiety of four representative materials versus biaxial strains from -10% (-14%) to 10%.

(5) Electronic properties

Figue S16 The band structures and PDOS for (a) $Sc_2@$, (b) $V_2@$, (c) $Zn_2@$, (d) $Y_2@$, (e) $Cd_2@$, (f) $Lu_2@$ and (g) $Hf_2@g-C_4N_3$ monolayers calculated at PBE+U level. (a')–(g') are band structures calculated at HSE06 level. Γ (0, 0, 0), M (0, 1/2, 0), and K (–1/3, 2/3, 0) are high symmetry points in the first Brillouin zone in reciprocal space. The PDOS of TM-*s*, TM-*p*, TM-*d*, C-*s*, C-*p*, N-*s*, N-*p*, and TDOS are plotted in light blue, orange, blue, red, green, violet, magenta, and black, respectively.

Fig. S17 The band structures and PDOS for (a) Ni₂@, (b) Ru₂@, (c) Rh₂@, (d) Pd₂@, (e) Re₂@, (f) Os₂@, (g) Ir₂@ and (h) Pt₂@g-C₄N₃ monolayers calculated at PBE+U level. (a')–(h') are band structures calculated at HSE06 level. Γ (0, 0, 0), M (0, 1/2, 0), and K (–1/3, 2/3, 0) are high symmetry points in the first Brillouin zone in reciprocal space. The PDOS of TM-*s*, TM-*p*, TM-*d*, C-*s*, C-*p*, N-*s*, N-*p*, and TDOS are plotted in light blue, orange, blue, red, green, violet, magenta, and black, respectively.

Table S9 Band gap values (eV) of pristine $g-C_4N_3$ and $TM_2@g-C_4N_3$ monolayers calculated at PBE+U and HSE06 levels, and the difference ΔE (eV) between the band gaps calculated at the two levels.

Structures	Magnetic	PBE+U	HSE06	ΔE		
$\sim C N_{\rm c}$	EM	Spin up: 2.208	Spin up: 3.107	Spin up: 0.899		
g-C41N3	ΓIVI	Spin down: 0	Spin down: 0	Spin down: 0		
$Sc_2@g-C_4N_3$	AFM2	0	0	0		
V ₂ @ g-C ₄ N ₃	AFM2	0	0	0		
$Mn_2@g-C_4N_3$	AFM2	0	0	0		
	EM	Spin up: 0.668	Spin up: 1.864	Spin up: 1.196		
$C0_2 @g-C_4 N_3$	FIVI	Spin down: 0.338	Spin down: 1.408	Spin down: 1.070		
$Ni_2@g-C_4N_3$	AFM2	0.670	1.684	1.014		
$Zn_2@g-C_4N_3$	NM	0	0	0		
$Y_2@g-C_4N_3$	NM	0	0	0		
7. @~ C N	EM	Spin up: 0	Spin up: 0	Spin up: 0		
$\Sigma I_2 @g - C_4 N_3$	ΓIVI	Spin down: 0.967	Spin down: 1.505	Spin down: 0.538		
$Ru_2@g-C_4N_3$	AFM1	0.909	1.812	0.903		
$Rh_2@g-C_4N_3$	AFM1	0.915	2.151	1.236		
$Pd_2@g-C_4N_3$	AFM2	1.304	2.295	0.991		
$Cd_2@g-C_4N_3$	NM	0	0	0		
$Lu_2@g-C_4N_3$	NM	0	0	0		
$Hf_2@g-C_4N_3$	NM	0	0	0		
$Re_2@g-C_4N_3$	AFM1	0.675	1.459	0.784		
$Os_2@g-C_4N_3$	AFM1	0.538	1.288	0.750		
$Ir_2@g-C_4N_3$	AFM1	0.421	1.379	0.958		
$Pt_2@g-C_4N_3$	AFM1	0.968	1.971	1.003		

Fig. S18 Top and side views of the charge density difference for 2D periodic (a) g-C₄N₃, (b) $Sc_2@$, (c) $V_2@$, (d) $Mn_2@$, (e) $Co_2@$, (f) $Ni_2@$, (g) $Zn_2@$, (h) $Y_2@$, (i) $Zr_2@$, (j) $Ru_2@$, (k) $Rh_2@$, (l) $Pd_2@$, (m) $Cd_2@$, (n) $Lu_2@$, (o) $Hf_2@$, and (p) $Re_2@$, (q) $Os_2@$, (r) $Ir_2@$, and (s) $Pt_2@g-C_4N_3$ monolayers in 2 × 2 × 1 supercells at an isosurface value of 0.01 e Å⁻³. Yellow and blue bubbles represent charge accumulation and depletion, respectively.

Fig. S19 The evolution of PDOS of different atoms near the Fermi level versus biaxial strains from -10% to 10% for Co₂@g-C₄N₃ monolayer. The Fermi level has been set to 0 eV.

Fig. S20 The evolution of PDOS of different atoms near the Fermi level versus biaxial strains from -14% to 10% for $Zr_2@g-C_4N_3$ monolayer. The Fermi level has been set to 0 eV.

Fig. S21 The evolution of PDOS of different atoms near the Fermi level versus biaxial strains from -10% to 10% for V₂@g-C₄N₃ monolayer. The Fermi level has been set to 0 eV.

Fig. S22 The evolution of PDOS of different atoms near the Fermi level versus biaxial strains from -10% to 10% for Mn₂@g-C₄N₃ monolayer. The Fermi level has been set to 0 eV.

(6) Optical properties

Fig. S23 The evolution of optical absorption coefficient versus biaxial strains from -10% to 10% for Co₂@g-C₄N₃ monolayers. The infrared, visible and ultraviolet regions are marked by red and purple dashed lines.

Fig. S24 The evolution of optical absorption coefficient versus biaxial strains from -14% to 8% for $Zr_2@g-C_4N_3$ monolayers. The infrared, visible and ultraviolet regions are marked by red and purple dashed lines.