Supporting Information

Selection of Aggregation-caused Quenching-based Fluorescent Tracer for Imaging Studies in Nano Drug Delivery Systems

Xin Ji^a, Yifan Cai^c, Xiaochun Dong^b, Wei Wu^c and Weili Zhao *a,b

^a Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.

^{b.} Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.

^{c.} Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.

*Corresponding Authors

E-mail: zhaow@henu.edu.cn

Table of contents

Apparatus and reagents	S2
Supplementary schemes	S3
Supplementary table	
Supplementary data	S11

Apparatus and reagents

All fluorescent dyes were supplied from Shanghai Energy Biopharma Co., Ltd. (ALA@energy). All reagents were purchased from commercial suppliers and used without further purification. DMSO in chromatographic purity was used in detection. Anhydrous solvents were acquired by standard methods prior to use. TLC analysis was performed on silica gel plates GF254 and chromatography was carried out on 200–300 mesh silica gel (Qingdao Haiyang Chemical, China). ¹H NMR spectra were recorded on a Varian Model Mercury 600 MHz spectrometer. ¹H NMR chemical shifts (δ) are given in ppm (s = singlet, d = doublet, t= triplet, q = quartet, m = multiplet) downfield from Me₄Si. ¹³C NMR spectra were acquired on a Varian Model Mercury 600 MHz spectrometer (Lengguang Tech, China). Fluorescence spectra were measured by Lengguang F98 fluorescence spectrophotometer (Lengguang Tech, China). Electrospray ionization (ESI) mass spectra were acquired with Agilent 1100Series LC/MSD and AB SCIEX Triple TOFTM 5600+ mass spectrometer. HRMS (high resolution mass spectrometry, DART positive) spectra were obtained on Thermo Fisher Scientific LTQ FT Ultra. All spectra were recorded at room temperature, except for the confocal laser scanning microscopic images.

Supplementary schemes

Scheme S1. Chemical Structures of BODIPYs.

Scheme S2. Chemical Structures of Type A Aza-BODIPYs

Scheme S3. Chemical Structures of Type B Aza-BODIPYs

Scheme S4. Chemical Structures of Type C Aza-BODIPYs

Supplementary table

Entry	λ _{abs} (nm) ^a	λ_{em} (nm) ^a	Stokes' shift (nm) ^a	FWHM (nm) ^a	ε (M ⁻¹ cm ⁻¹) ^a	Φ	Φ *3
BDP-1	497	507	10	10	79380	0.67 ^b	53184
BDP-2	499	505	6	17	85600	0.92 ^b	78828
BDP-3	647	662	15	30	102460	0.28 °	28688
BDP-4	682	697	15	36	72288	0.10 ^d	7228
BDP-5	519	540	21	41	58860	0.32 ^b	18835
BDP-6	561	596	35	49	44410	0.38 ^b	16876
BDP-7	594	613	19	38	59330	0.43 ^b	25512
BDP-8	616	595	21	35	88900	0.40 ^b	35560
BDP-9	631	654	23	41	99570	0.18 °	17923
BDP-10	634	659	25	40	138460	0.17 °	23538
P2	703	735	32	45	10500	0.35	36750
P4	643	661	18	32	149100	0.65	96915

Table S1 Photophysical properties of simple BODIPYs

^a Measured in CH₃CN.

^b Φ_f is the relative fluorescence quantum yield estimated by using **Rhodamine B** ($\Phi_f = 0.65$ in Ethanol) as a fluorescence standard.

^c Φ_f is the relative fluorescence quantum yield estimated by using P4 ($\Phi_f = 0.65$ in CH₃CN) as a fluorescence standard.

^d Φ_f is the relative fluorescence quantum yield estimated by using P2 ($\Phi_f = 0.35$ in CH₃CN) as a fluorescence standard.

Entry	λ _{abs} (nm) ^a	λ_{em} (nm) ^a	Stokes' shift (nm) ^a	FWHM (nm) ^a	ε (M ⁻¹ cm ⁻¹) ^a	Φ	Ф*з
BDP-11	573	610	37	39	62000	0.67	41540
BDP-12	589	615	26	32	71500	0.64	45760
BDP-13	573	610	37	39	65600	0.66	43296
BDP-14	609	640	31	36	71500	0.65	46475
BDP-15	600	633	33	37	57900	0.73	42267
BDP-16	603	636	33	39	57600	0.68	39168
BDP-17	603	637	34	39	60300	0.50	30150
BDP-18	603	652	49	48	54000	0.67	36180
BDP-19	593	641	48	47	62100	0.68	42228
BDP-20	625	658	33	40	82500	0.71	58575
BDP-21	626	665	39	44	66800	0.73	48764
BDP-22	634	668	34	42	79900	0.52	41548
BDP-23	664	686	22	37	122400	0.37	45288

Table S2 Photophysical properties of the BODIPYs

^b $\Phi_{\rm f}$ is the relative fluorescence quantum yield estimated by using P4 ($\Phi_{\rm f} = 0.65$ in CH₃CN) as a fluorescence standard.

Entry	λ _{abs} (nm) ^a	$\lambda_{em} \left(\mathbf{nm} \right)^{a}$	Stokes' shift (nm) ^a	FWHM (nm) ^a	ε (M ⁻¹ cm ⁻¹) ^a	Φ	Ф*з
Aza-A1	656	690	34	39	86100	0.22	18942
Aza-A2	683	720	37	46	85000	0.24	20400
Aza-A3	649	683	34	40	67000	0.13	8710
Aza-A4	685	724	39	46	87500	0.24	21000
Aza-A5	690	731	41	56	48800	0.24	11712
Aza-A6	688	727	39	50	82000	0.26	21320
Aza-A7	698	735	37	53	87500	0.21	18375
Aza-A8	703	745	42	55	68900	0.12	8268
Aza-A9	732	757	25	39	116800	0.22	25696
Aza-A10	742	766	24	41	122200	0.13	15886
Aza-A11	733	757	24	37	96200	0.12	11544
Aza-A12	754	773	19	42	102500	0.11	11275
Aza-A13	688	714	26	40	57200	0.21	12012
Aza-A14	691	721	30	44	55700	0.21	11697
Aza-A15	684	712	28	41	75300	0.25	18825
Aza-A16	682	712	30	46	76100	0.18	13698
Aza-A17	687	717	30	52	71900	0.28	20132

Table S3 Photophysical properties of the Type A Aza-BODIPYs

 b Φ_f is the relative fluorescence quantum yield estimated by using P2 (Φ_f = 0.35 in CH₃CN) as a fluorescence standard.

			1 5 1 1	51			
Entry	λ _{abs} (nm) ^a	λ_{em} (nm) ^a	Stokes' shift (nm) ^a	FWHM (nm) ^a	ε (M ⁻¹ cm ⁻¹) ^a	Φ	Ф*з
Aza-B1	688	721	33	39	94600	0.41	38786
Aza-B2	681	711	30	39	72000	0.35	25200
Aza-B3	714	735	21	35	120000	0.28	33600
Aza-B4	698	739	41	53	75000	0.20	15000
Aza-B5	718	741	23	40	108500	0.28	30380
Aza-B6	730	754	24	40	115300	0.22	25366
Aza-B7	736	761	25	40	149300	0.16	23888
Aza-B8	721	742	21	41	141600	0.28	39648
Aza-B9	711	743	32	47	82000	0.24	19680
Aza-B10	704	737	33	46	88000	0.28	24640
Aza-B11	709	744	35	49	65000	0.21	13650
Aza-B12	699	729	30	42	77000	0.26	20020
Aza-B13	714	747	33	47	91900	0.22	20218
Aza-B14	713	746	33	48	71100	0.17	12087
Aza-B15	719	750	31	44	48800	0.20	9760
Aza-B16	716	752	36	49	91900	0.13	11947
Aza-B17	724	758	34	45	79000	0.11	8690
Aza-B18	720	760	40	48	57880	0.10	5788

Table S4 Photophysical properties of the Type B Aza-BODIPYs

^b Φ_f is the relative fluorescence quantum yield estimated by using P2 ($\Phi_f = 0.35$ in CH₃CN) as a fluorescence standard.

Entry	λ _{abs} (nm) ^a	λ_{em} (nm) ^a	Stokes' shift (nm) ^a	FWHM (nm) ^a	ε (M ⁻¹ cm ⁻¹) ^a	Φ	Ф *3
Aza-C1	706	725	19	33	123000	0.27	33210
Aza-C2	718	739	21	43	115000	0.29	33350
Aza-C3	718	735	17	42	37000	0.31	11470
Aza-C4	730	750	20	39	106000	0.20	21200
Aza-C5	714	732	18	35	112000	0.31	34720
Aza-C6	715	732	17	35	106000	0.17	18020
Aza-C7	731	752	21	38	156000	0.24	37440
Aza-C8	728	748	20	37	153000	0.30	45900
Aza-C9	699	716	17	31	104000	0.29	30160
Aza-C10	698	709	11	27	_ c	_ c	_ c
Aza-C11	703	719	16	36	_ c	_ c	_ c
Aza-C12	725	744	19	39	129000	0.23	29670
Aza-C13	718	740	22	42	122000	0.15	18300
Aza-C14	744	764	20	39	133000	0.14	18620
Aza-C15	755	776	21	48	138000	0.10	13800
Aza-C16	716	735	19	35	139000	0.27	37530
Aza-C17	704	724	20	31	141000	0.23	32430
Aza-C18	736	757	21	38	122000	0.21	25620
Aza-C19	740	760	20	38	138000	0.16	22080
Aza-C20	706	726	20	33	122000	0.21	25620
Aza-C21	750	767	17	42	104000	0.09	9360
Aza-C22	724	744	20	40	106000	0.15	15900
Aza-C23	748	769	21	40	71100	0.07	4973
Aza-C24	753	778	25	50	112300	0.04	4492

Table S5 Photophysical properties of the Type C Aza-BODIPYs

^b Φ_f is the relative fluorescence quantum yield estimated by using P2 ($\Phi_f = 0.35$ in CH₃CN) as a fluorescence standard.

^c Such data could not be obtained due to the limited solubility of the probes in CH₃CN.

	Tuble 50 Tuble 5126, TDT and Zear potential of Indorescently indered This							
Probe	Size (nm)	PDI	Zeta potential (mV)	EE (%)				
P2	57.19±1.42	0.161 ± 0.02	-7.97 ± 0.25	97.2				
Aza-C7	52.73±0.15	0.175±0.01	-6.80 ± 0.41	95.6				
DiR	55.81±0.82	0.176±0.02	-6.59 ± 0.20	98.9				

Table S6 Particle size, PDI and zeta potential of fluorescently labeled PMs

Supplementary data

Figure S1 Fluorescence spectra (normalized) of the probes (250 nM) in acetonitrile/water systems as a function of water fractions. (a) For **7D4MC**, excitation at 365 nm; (b) for **Nile Red**, excitation at 535 nm; (c) for **Cy5 DIME**, excitation at 580 nm; (d) for **TMBDY**, excitation at 460 nm; (e) for **Rhodamine B**, excitation at 510 nm; (f) for **TPP**, excitation at 460 nm; (g) for **P2**, excitation at 680 nm; (h) for **P4**, excitation at 600 nm (slit: 2/5 nm).

Figure S2 Normalized fluorescence intensity (%) change of the probes (250 nmol/L) in acetonitrile and water. For ease of comparison, fluorescence intensity is displayed as percentages of the fluorescence intensity of probe-acetonitrile solution with the same volume. The excitation was set at the wavelength blue-shifted by 20 nm compared to the maximal absorption wavelength of the probe (slit: 5/5 nm).

Figure S3 Normalized fluorescence of the probes (250 nmol/L, a: **Type A** Aza-BODIPY; b: **Type B** Aza-BODIPY; c: **Type C** Aza-BODIPY) in water relative to acetonitrile. The excitation was set at the wavelength blue-shifted by 20 nm compared to the maximal absorption wavelength of the probe (slit: 5/5 nm).

Figure S4. Particle size distribution for fluorescently labeled PMs.

Figure S5. The standard curves of probes (a: P2, b: Aza-C7 and c: DiR) in DMSO.

Figure S6. Particle size and PDI stability in water for fluorescently labeled PMs.