Supporting information

Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles

David A. González-Martínez ^{b,c}, Gustavo González Ruíz ^a, Cesar Escalante-Bermúdez ^{a,d}, Judey Aymed García Artalejo ^a, Tania Gómez Peña ^a, José Alberto Gómez ^a, Eduardo González-Martínez ^c, Yadira Cazañas Quintana ^a, Thais Fundora Barrios ^a, Tays Hernández ^a, Roberto Carlos Varela Pérez ^a, Dayli Díaz Goire^a, Diaselys Castro López ^a, Ingrid Ruíz Ramirez ^a, Carlos R. Díaz Águila ^e and Jose Moran-Mirabal ^c.

^aCentro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.

^bFacultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.

^cDepartment of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.

^dLaboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.

^eCentro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba

*Corresponding authors (These authors contributed equally).

E-mail addresses: daalegm96@gmail.com (D.A. González-Martínez), gustavog@cim.sld.cu (G. González Ruíz).

Figure S1: TEM images of (a) MIONPs and (b) MIONPs-Cit; and particles size distribution ((c) MIONPs and (d) MIONPs-Cit).

Figure S2: DLS profiles by intensity of MIONPs (black) and MIONPs-Cit (red).

Figure S3: Photographs of MIONPs-Cit (left) after 48 h of coating and MIONPs (right) after 1 h of obtention.

Figure S4: Thermogravimetric analysis of the MIONPs (black) and the MIONPs (red).

Figure S5: RP-HPLC chromatograms of the original supernatant and the SN UF/DF.

Figure S6: Isoelectric points of the monomeric (lane 2) and dimeric (lane 3) RBD. Lane 1 corresponds to Marker Broad range (pH 3-10) cat 17-0471-01.

Figure S7: Purification process of the RBD obtained with MIONPs-Cit at the 50 mL scale. (a) Gel filtration chromatography with a Sephadex G-25 resin was used to exchange the desorbed RBD from the desorption buffer used in the capture step

with MIONPs-Cit to the adsorption buffer employed posteriorly in cationic exchange chromatography (b) HiTrap SP Sepharose HP cationic exchange chromatography. (c) Size exclusion chromatography using a Superdex resin.

	Capture	Buffer exchange	Cationic exchange	Molecular exclusion	Process	
Yield \pm SD (%)	68 ± 1	107 ± 2	66 ± 3	87 ± 5	42 ± 5	

Table S1: Mass balance of the process of RBD purification using MIONPs-Cit in the capture step.

Figure S8: Fluorescence spectra of mixtures rich in monomer (green) and dimer (blue), a monomer control (black), and a dimer control (red). The spectra were obtained with an excitation wavelength of 295 nm for tryptophan (a) and 275 nm for tyrosine and tryptophan (b).

Table S2: Maximal emission wavelengths of the monomer, the dimer, and de corresponding controls, obtained with excitation wavelengths of 295 nm (Trp) and 275 nm (Tyr/Trp); and full width at half maximum (FWHM) obtained with excitation wavelengths of 295 nm.

Sample	Maximum emiss	sion wavelength (nm)	FWHM ($\lambda ex = 295$) (nm)	
	$\lambda ex = 295 \text{ nm (Trp)}$	$\lambda ex = 275 \text{ nm (Tyr/Trp)}$		
Mixture rich in RBD-m	334	332	47.3	
Mixture rich in RBD-d	334	331	47.2	

Monomer control	333	330	44.1
Dimer control	333	329	43.9