## Supplementary Materials

## Brittle-to-ductile transition and theoretical strength in

## a metal-organic framework glass

Shaohua Yan<sup>a,b</sup>, Thomas D. Bennett<sup>c</sup>, Weipeng Feng<sup>d</sup>, Zhongyin Zhu<sup>e</sup>,

Dingcheng Yang<sup>f</sup>, Zheng Zhong<sup>b,\*</sup>, Qing H. Qin<sup>g,\*</sup>

<sup>a</sup> College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen,

China.

<sup>b</sup> School of Science, Harbin Institute of Technology, Shenzhen, China.

<sup>c</sup> Department of Materials Science and Metallurgy, University of Cambridge,

Cambridge, United Kingdom

<sup>d</sup> College of Civil and Transportation Engineering, Shenzhen University, Shenzhen,

China.

<sup>e</sup> School of Materials Science and Engineering, Southwest Jiaotong University,

Chengdu, China.

<sup>f</sup>Research School of Electrical, Energy and Materials Engineering, Science, The Australian National University, ACT, Australia.

<sup>g</sup> Department of Engineering, Shenzhen MSU-BIT University, Shenzhen, China

\* Corresponding authors and email address: <u>zhongzheng@hit.edu.cn</u>,

qinghua.qin@smbu.edu.cn.

This file includes:

Figures S1-S14.
Movie S1.
In situ bending test for a pillar with D=500 nm (speed up for seven times).
Movie S2.
In situ bending test for a pillar with D=300 nm (speed up for four times).
Movie S3.
In situ bending test for a pillar with D<300 nm (speed up for twelve times).</li>
Movie S4.
Atomistic simulation of uniaxial compression on ZIF-62 glass with the dimension of 11.9 nm, 11.9 nm, and 13.84 nm.



Figure S1. The hot-pressed machined used for fabricating ZIF-62 glass. The model is OTF-1200X-VHP4, more information can be found on the official website of Hefei Kejing Materials Technology Co., Ltd. (http://www.kjmti.com/product/14182.html).



Figure S2. Optical observation of the ZIF-62 glass, (a) a piece of MOF glass, (b) no bubbles or cracks were seen under the microscopic examination.



Figure S3. SEM observation along the cross section, no microscale bubbles/pores and cracks were evidenced in these figures.



Figure S4. TEM examination along the cross section, the nanoscale observation shows no bubbles/pores and cracks in our sample.



Figure S5. Distribution of chemical elements from the EDS observation in SEM. The elements were evenly distributed in our sample.

![](_page_6_Figure_0.jpeg)

Figure S6. Nanoscale examination along the cross section in TEM, no cracks and bubbles/pores were presented, and the chemical elements were evenly distributed along the cross section.

![](_page_7_Figure_0.jpeg)

Figure S7. MD simulated microstructural changes in ZIF-62 during melt-quenched process. (a) 300 K, (b) 1500 K, (c) Glassy state. (d) Zn-N pair distribution function at different state. (e) The number of Zn-N bounds at different temperatures. At 300 K, most of Zn-N bonds are four-fold types; whereas the four-fold Zn-N bounds at 1500 K are broken into three-fold, two-fold, and one-fold ones, because Zn-N bounds tend to be separated at high temperatures. At glassy state, there are four-fold and three-fold Zn-N bonds, indicating that some Zn-N bounds reconnected during cooling down process.

![](_page_8_Figure_0.jpeg)

Figure S8. Cyclic loading on the pillars with D around 300 nm. (a) Cyclic stress-strain curves under 7% strains, softening behavior is presented from the curves. (b) SEM image shows that the deformed area locates at the top of the pillar, and deformation occurs in a ductile way. (c) Cyclic stress-strain curves under 3% strains, cyclic softening is also presented, though the applied strain is much smaller. (d) Ductile deformed morphology is shown in the SEM image.

![](_page_9_Figure_0.jpeg)

Figure S9. Brittle-to-ductile transition in pillars of ZIF-62 glass under in-situ mechanical testing. (a)-(c) The deformed morphologies of pillars with D=500 nm, 300 nm, and D $\leq$ 100 nm, respectively. From (a)-(c), we can see that a transition from brittle state to ductile state is also observed in in-situ bending process. This figure confirms that the ZIF-62 glass can be deformed in a ductile way under tensile loadings when reducing the size below a critical value.

![](_page_10_Figure_0.jpeg)

Figure S10. In-situ bending a pillar with D=500 nm. (a)-(d) Images showing that the pillar is bent with a W tip. The bottom (blue arrow indicated) is cracked during bending process. (e)-(f) SEM images show that the shape of the pillar recovers around 15° after unloading. This process indicates that the pillar with D=500 nm subjected to tensile stress fails in a brittle manner.

![](_page_11_Figure_0.jpeg)

Figure S11. In-situ bending a pillar with D=300 nm. (a)-(d) SEM images show the insitu bending process. Cracking occurs at the bottom (white arrow indicated in c). (d)-(e) SEM images show that the shape of the pillar recovers by 28° after unloadings. The crack at the bottom (white arrow indicated in c and e) suggests that the pillar with D=300 nm fails brittlely.

![](_page_12_Figure_0.jpeg)

Figure S12. Plot of elastic modulus versus diameter, a trend of "smaller is stronger" is observed.

![](_page_13_Figure_0.jpeg)

Figure S13. Ashby map of Young's modulus versus density of ZIF-62 glass and other structural materials. The modulus of ZIF-62 glass is overlapped with some non-technical ceramics, and greater than that of foams, polymers, elastomers, and most of natural materials. However, E of ZIF-62 glass is smaller than that of traditional glasses, technical ceramics, and metal alloys, due to the relative weakness of Zn-N bonds compared to others (e.g., Si-O).

![](_page_14_Figure_0.jpeg)

Figure S14. FEM simulation of bending a pillar (D=300 nm). (a) The stress-strain data from experiment and simulation, which shows a good fitting. (b) Deformed morphology of the bended pillar. (c) A similar morphology is attained from simulation, and the principal stress shows the distribution of tensile and compressive stress in the bended pillar.