Supplementary Information:

Lipid peroxidation in diamond supported bilayers

A. R. Ortiz Moreno¹#, R.Li¹#,K. Wu, R. Schirhagl^{*1}

 Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, the Netherlands

E-mail corresponding author:

romana.schirhagl@gmail.com

these authors contributed equally

1. Relaxometry curves

Figure S1: Relaxometry curves for the DPPC measurements (Data in dots, exponential fit in the continuous line).

Figure S2: Relaxometry curves for the POPC measurements (Data in dots, exponential fit in the continuous line).

Figure S3: Relaxometry curves for the POPG measurements (Data in dots, exponential fit in the continuous line).

2. Particle size

Figure S4. Size distribution of lipid particles measured by DLS

	Z-average /nm	PDI
DPPC	607.8	0.248
POPC	371.8	0.400
POPG	223.7	0.214

3. Surface coverage for the different membrane types

Surface coverage: Fluorescently labelled liposomes where imaged using confocal microscopy (see main manuscript). The image analysis was done using FIJI. 4 areas of 40*40 um² were selected randomly. A threshold of 124 was selected to differentiate liposomes from uncovered area.

Percentage of Surface coverage= covered area of liposomes/ 40*40 um² 100%

Statistics: using T-test of Mann-Whitney for two groups by GraphPad Prism 8.0.1

Figure S5. Surface coverage for different lipid membranes of the diamond surface. (n=4)