Supporting information

Room Temperature Exciton Formation and Robust Optical Properties of CVD-Grown Ultrathin Bi₂O₂Se Crystals on Arbitrary Substrates

Md Tarik Hossain¹, Tadasha Jena², Upasana Nath³, Manabendra Sarma³ and P. K. Giri^{1, 2*}

¹Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039, India ²Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India

³Department of chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India

Index:

Figure S1: Optical and atomic force microscopy images of Bi ₂ O ₂ Se on different growth	
substrates	3
Figure S2: Photograph and optical image of Bi ₂ O ₂ Se film on quartz substrate	4
Figure S3: XRD pattern of Bi ₂ O ₂ Se on different growth substrates	4
Figure S4: Raman spectra of Bi ₂ O ₂ Se on different growth substrates	5
Figure S5: XPS survey scan spectra of Bi ₂ O ₂ Se on different growth substrates	6
Figure S6: XPS high resolution spectra of Bi ₂ O ₂ Se on mica substrates	6
Figure S7: XPS high resolution spectra of Bi ₂ O ₂ Se on glass substrates	7
Figure S8: FWHM of A _{1g} mode (Raman) as a function of growth substrates	7
Figure S9: Absorption spectrum of Bi ₂ O ₂ Se/quartz	7
Figure S10: Crystal structure, high symmetry points and Density of states of Bi ₂ O ₂ Se	8
Figure S11: Differentiated K-M plot (absorption spectra) of Bi ₂ O ₂ Se on quartz and glass	
substrates	8
Figure S12: Absorption coefficients of Bi ₂ O ₂ Se on different substrates	.9
Figure S13: Tauc plot (indirect gap)	9
Figure S14: Optical band gap of Bi ₂ O ₂ Se on different growth substrates	10
Figure S15: Reflectance spectra	10
Figure S16: NIR PL spectra of Bi ₂ O ₂ Se	.11
Figure S17: Differentiated reflectance and PL of Bi ₂ O ₂ Se on mica substrate	11
Figure S18: Differentiated reflectance and PL of Bi ₂ O ₂ Se on sapphire substrate	12

Corresponding author, email: <u>giri@iitg.ac.in</u> (PKG),

Figure S19: Tauc plot (direct gap)	12
Figure S20: Low-temperature PL of SiO ₂ substrate	13
Figure S21: Room temperature PL of SiO ₂ substrate	13
Figure S22: Electronic band structure plot of Bulk- Bi ₂ O ₂ Se using DFT+U	13
Table S1: XPS spectra fitting parameters	14
Table S2: Absorption peaks of Bi2O2Se grown on different substrate	14
Table S3: 'Refractive index (η)' of as-grown Bi ₂ O ₂ Se and growth substrates	14
Table S4: Energy value at different high symmetry k-points	15
Table S5: Energies of different transition	15

Figure S1: (a-e) Atomic force microscopy images of mica, sapphire, SiO₂, quartz, and glass substrate denoting the roughness of the surface. (f-k) Optical microscopy images of as-grown samples on different substrates. (j-q) Topography images of as-grown samples and (r-w) their corresponding height profile. Inset of (f-i) highlights the edge morphology of the synthesized Bi₂O₂Se. Inset of (h and i) has the scale bar of 0.2 and 0.5 μ m.

Figure S2: (a) Photograph of Bi_2O_2Se film grown over a 1×1 cm² quartz substrate. (b) Optical microscopy image of Bi_2O_2Se film over quartz substrate displaying large area growth.

Figure S3: Comparative XRD pattern of Bi₂O₂Se crystals directly grown on mica, SiO₂, sapphire, glass, and quartz substrates by CVD process.

Figure S4: Comparative Raman spectra of Bi_2O_2Se crystals directly grown on mica, SiO_2 , sapphire, glass, and quartz substrates by CVD process.

Figure S5: Comparative XPS survey scan spectra of Bi₂O₂Se on (a) Sapphire, (b) quartz, (c) SiO₂, (d) mica, and (e) glass substrates.

Figure S6: XPS spectra of Bi_2O_2Se on mica substrate: (a) Bi 4f, (b) O 1s, and (c) Se 3d. Experimental data are represented using symbols and fitted spectra using solid lines with shaded regions. Shirley's baseline was utilized for XPS spectral fitting.

Figure S7: XPS spectra of Bi_2O_2Se on glass substrate: (a) Bi 4f, (b) O 1s, and (c) Se 3d. Experimental data are represented using symbols and fitted spectra using solid lines with shaded regions. Shirley's baseline was utilized for XPS spectral fitting.

Figure S8: FWHM of Raman A1g Raman mode of Bi2O2Se on different growth substrates.

Figure S9: Absorption spectrum of Bi_2O_2Se on quartz substrate. The inset shows a magnified view of the absorption spectrum in the region 425-530 nm.

Figure S10: (a) Optimized structure (I4/mmm), (b) High symmetry K-point in the Brillouin zone, and (c) Partial Density of states (PDOS) of Bi, O, and Se. (d) Density of states (DOS) of Bi_2O_2Se . Purple, red, and blue balls depict Bi, O, and Se atoms, respectively. Fermi-level (E_F) is set at zero.

Figure S11: Differentiated Kubelka-Munk plot (absorption spectra) depicting multiple exciton peaks of Bi₂O₂Se grown on quartz and glass substrates.

Figure S12: Absorption coefficients of Bi₂O₂Se grown on mica, quartz, sapphire, and glass substrates.

Figure S13: Tauc plot (indirect bandgap) of Bi_2O_2Se crystals on (a) mica, (b) SiO_2 , (c) sapphire, (d) quartz, and (e) glass substrates. Direct extrapolation (DE) and proper extrapolation (PE) estimate of the optical energy gap of as-grown Bi_2O_2Se on different substrates.^{1,2}

Figure S14: Direct correlation between the measured optical bandgap and strain in Bi₂O₂Se crystals on different substrate.

Figure S15: Reflectance spectra of Bi₂O₂Se crystals on mica, quartz, sapphire, and SiO₂ substrates.

Figure S16: NIR PL spectra of Bi_2O_2Se crystals on mica substrates. The solid lines are Gaussian fitted spectra showing 833, 904, 970 nm peaks originating from indirect transitions. Symbols represents the experimental data.

Figure S17: (a) Differential reflectance spectrum (left y-axis) and PL spectrum (right y-axis) of Bi₂O₂Se crystals grown on mica substrate. (b) Deconvoluted PL spectra of Bi₂O₂Se on mica.

Figure S18: (a) Differential reflectance spectrum (left y-axis) and PL spectrum (right y-axis) of Bi_2O_2Se crystals grown on a sapphire substrate. (b) Deconvoluted PL spectra of Bi_2O_2Se on sapphire.

Figure S19: Tauc plot considering the direct band gap of Bi_2O_2Se crystals on (a) mica, (b) SiO_2 , (c)sapphire, (d) quartz, and (e) glass substrates. Tauc line 1 (TL1) defines the first direct optical transition, while Tauc line 2 (TL2) signifies the second direct optical transition.

Figure S20: Low temperature (77 K) PL spectrum of bare SiO₂ substrate.

Figure S21: Room temperature (300 K) PL spectrum of bare SiO₂ substrate.

Figure S22: Electronic band structure plot of Bulk- Bi₂O₂Se using DFT+U.

Table S1: Fitting parameters of XPS spectra showing the binding energies of each element (Bi 4f, O 1s, Se 3d) in Bi₂O₂Se grown on different substrates.

Growth	Growth	Binding energies (eV)							
Substrate	temperature	Bi		O1s		Se ²⁺		Se ⁴⁺	
	(°C)	4f _{7/2}	4f _{5/2}	(I)	(II)	3d _{5/2}	3d _{3/2}	(I)	(II)
Sapphire	560	158.8	164.2	530.1	530.8	53.0	53.8	58.5	59.3
Quartz	540	159.0	164.3	529.9	531.5	53.1	53.8	58.6	59.4
SiO ₂	560	159.2	164.5	530.0	531.9	52.8	53.7	58.8	59.9
Mica	560	158.9	164.2	529.6	531.6	53.0	53.8	-	-
Glass	540	158.8	164.2	529.6	532.3	52.3	53.1	58.4	59.2

Table S2: Absorption peak positions of Bi₂O₂Se for different growth substrates.

Growth Substrate	Peak positions (nm)
Mica	~460 nm, ~490 nm, ~654 nm
Glass	~456 nm, ~484 nm, ~649 nm
Quartz	~435 - 550 nm, ~634 nm
Sapphire	~450 nm, ~486 nm, ~651 nm
SiO ₂	~455 nm, ~486 nm, ~662 nm

Table S3: 'Refractive index (n)' of as-grown Bi₂O₂Se and the growth substrates.

Growth substrate	n of growth substrate	n of Bi ₂ O ₂ Se on the growth substrate		
Quartz	1.40	3.367		
SiO ₂	1.47	3.375		
Glass	1.52	3.370		
Mica	1.56	3.378		
Sapphire	1.77	3.373		

Valance	Band (eV)	Conduction Band (eV)		
$\Gamma_{\rm VB}$ (outer)	-0.99	Γ_{CB} (outer)	0.87	
$\Gamma_{\rm VB}$ (inner)	-1.36	Γ_{CB} (inner)	1.27	
X _{VB}	-0.44	-	-	
M_{VB}	-1.40	M _{CB} (outer)	1.23	
-	-	M _{CB} (inner)	1.42	
R _{VB}	-0.45	-	-	
A _{VB}	-1.52	A _{CB}	2.13	
Zvb	-1.13	-	-	

Table S4: Energy values at different high symmetry k-points, as obtained from the DFT calculation.

Table S5: Summary of energy differences at high symmetry k-points due to different indirect and direct transitions calculated theoretically and observed experimentally.

	Theore	tical values		Experimental values
Transitions	Energy (eV)	Wavelength	Exciton	Wavelength (nm)
		(nm)		
$\Gamma_{\rm VB}$ (outer)– $\Gamma_{\rm CB}$ (outer)	1.86	667	А	683
Γ_{VB} (inner)– Γ_{CB} (outer)	2.23	556	В	606
Γ_{VB} (outer)– Γ_{VB} (inner)	2.26	548	С	551
Γ_{VB} (inner)– Γ_{CB} (inner)	2.63	471	D	500
M _{VB} -M _{CB} (outer)	2.63	471		
M _{VB} -M _{CB} (inner)	2.82	440	Е	
$X_{VB} - \Gamma_{CB}$ (outer)	1.31	946	Eindirect	970
$R_{VB} - \Gamma_{CB}$ (outer)	1.32	939		904
X _{VB} -M _{CB} (outer)	1.67	743		833
R _{VB} -M _{CB} (outer)	1.68	738		728
$X_{VB} - \Gamma_{CB}$ (inner)	1.71	725		
$R_{VB} - \Gamma_{CB}$ (inner)	1.72	721		
R _{VB} -M _{CB} (inner)	1.87	663		
Γ_{VB} (outer)– M_{CB} (outer)	2.22	559		
$M_{VB} - \Gamma_{CB}$ (outer)	2.27	546		
Γ_{VB} (outer)– M_{CB} (inner)	2.41	515		
Γ_{VB} (inner)– M_{CB} (outer)	2.59	479		
$M_{VB} - \Gamma_{CB}$ (inner)	2.67	464		
Γ_{VB} (inner)– M_{CB} (inner)	2.78	446		

References:

- 1 Jubu, P. R., Yam, F. K., Igba, V. M. & Beh, K. P. Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. *Journal of Solid State Chemistry* **290**, 121576, doi:https://doi.org/10.1016/j.jssc.2020.121576 (2020).
- 2 Jubu, P. R. *et al.* Influence of the secondary absorption and the vertical axis scale of the Tauc's plot on optical bandgap energy. *Journal of Optics*, doi:10.1007/s12596-022-00961-6 (2022).