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I. THEORETICAL FRAMEWORK

We present a comprehensive account of the theoretical framework used in the main text for describing plasmon satellites in
core-level photoemission from plasmonic nanostructures. A minimal model governing the electron–plasmon interaction follows
from the Hamiltonian [1–5]

Ĥ = ~ω0â†â + g∗(t) â† + g(t) â, (S1a)

where we assume a single plasmon mode described as a quantum harmonic oscillator, whereas the photoelectron and core hole are
treated as classical external charges. More precisely, â† and â are bosonic plasmon creation and annihilation operators, ω0 is the
plasmon frequency, and g(t) is a classical time-dependent electron–plasmon coupling energy given by [5]

g(t) =

∫
dr φp(r) ρext(r, t) (S1b)

in terms of the electric potential φp(r) associated with a single plasmon quantum and the combined photoelectron plus core-hole
charge density ρext(r, t) = e

{
φp(r) δ(r − r0) − φp(r) δ(r − [r0 + vt])

}
Θ(t). Here Θ(t) is the Heaviside step function and we assume
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the photoelectron to be emitted from r0 at time t = 0, following a straight-line trajectory with constant velocity v. Combining this
expression and Eq. (S1b), the coupling coefficient can be written as

g(t) =
[
g0 + g1(t)

]
Θ(t) (S2a)

in terms of the photohole and photoelectron contributions

g0 ≡ eφp(r0), (S2b)
g1(t) ≡ −eφp(r0 + vt), (S2c)

respectively. This model assumes that the core hole is localized and static [6–9], so that the time dependence in g(t) comes from
the photoelectron alone.

1. Plasmon eigenstates in the presence of the core hole

The final state of the plasmon at infinite time (i.e., with the photoelectron already far from the structure) is affected by the
presence of the photohole. Thus, it is necessary to find the eigenstates of the t → ∞ Hamiltonian

Ĥ∞ = ~ω0â†â + g∗0â† + g0â, (S3)

which can be readily diagonalized by performing the unitary transformation H̃∞ = eŝĤ∞e−ŝ with [6, 10]

ŝ = ∆∗0â† − ∆0â (S4)

and

∆0 =
g0

~ω0
. (S5)

We find

H̃∞ = ~ω0
(
â†â − |∆0|

2), (S6)

and hence

H̃∞ |n〉 = ~ω0
(
n − |∆0|

2) |n〉 , (S7)

from which we can write

Ĥ∞ |ñ〉 = ~ω0
(
n − |∆0|

2) |ñ〉 , (S8a)

where

|ñ〉 = e−ŝ |n〉 , (S8b)

are the sought-after eigenstates with eigenenergies ~ω0
(
n − |∆0|

2) corresponding to a rigid shift by −~ω0|∆0|
2 from the ones of the

particle without a hole.

II. PLASMON SATELLITE PROBABILITIES

We calculate the satellite probabilities following a nonperturbative quantum-mechanical approach in two physically relevant
scenarios: one in which the plasmon mode is initially in the ground-state (Sec. II A below); and a second one with the plasmon
prepared in a coherent state prior to photoemission (e.g., by resonant laser illumination, see Sec. II B). The photoelectron is
assumed to be emitted from a core level in a surface atom, which is reasonable considering that the photoelectron escape depth is
. 1 nm for kinetic energies in the 10 – 1500 eV range [11, 12].

A. Plasmon initially in its ground state

This is a common scenario because we typically have ~ω0 � kBT , where T is the temperature. The initial plasmon state is
|ψ(t0 = 0)〉 = |0〉 and, after photoemission, there is a one-to-one correspondence between the number of plasmons created (n) and
the photoelectron energy loss (n~ω0) relative to the direct peak at kinetic energy E0. Below, we derive the satellite probabilities
using two different (but equivalent) approaches: one based on the coherent-state solution previously identified in the context of
electron energy-loss spectroscopy (EELS) [1, 2, 5], and a more general one relying on the S -matrix formalism (bearing some
resemblance to the quantum mechanical description of photon-induced near-field electron microscopy (PINEM) [13, 14]).
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1. Coherent-state ansatz

Noting that the Hamiltonian in Eq. (S1) is the same as for a classically driven quantum harmonic oscillator [15], the Schrödinger
equation i~|ψ̇(t)〉 = Ĥ |ψ(t)〉 admits the solution [5]

|ψ(t)〉 = eiχ(t) |α(t)〉 , (S9a)

|α(t)〉 = e−|α(t)|2/2
∞∑

n=0

[α(t)]n

√
n!

e−inω0t |n〉 , (S9b)

where |α(t)〉 is a coherent state [obeying â |α(t)〉 = α(t) e−iω0t |α(t)〉] [15, 16] of amplitude

α(t) = −
i
~

∫ t

t0
dt′g∗(t′) eiω0t′ , (S10)

and χ(t) = − 1
~

∫ t
t0

dt′ Re
{
α(t′) g(t′) e−iω0t′

}
+ χ(t0) is a global phase that we ignore in what follows because it does not affect the

satellite probabilities.
Projecting Eqs. (S9a) on the eigenstates of Eq. (S8b), the probability associated with a satellite corresponding to the excitation

of n plasmons reduces to

P−n = |〈ñ|ψ(t → ∞)〉|2 = lim
t→∞

e−|α(t)|2

∣∣∣∣∣∣∣
∞∑

m=0

[α(t)]m

√
m!

e−imω0t Mnm

∣∣∣∣∣∣∣
2

(S11a)

in terms of the matrix elements

Mnm = 〈ñ|m〉 = 〈n| eŝ |m〉 = 〈n| e∆∗0â†−∆0â |m〉 = e−|∆0 |
2/2
√

n!m!
(
∆∗0

)n−m
m∑

j=max{0,m−n}

(
−|∆0|

2
) j

j!(m − j)!(n − m + j)!
(S11b)

[see Appendix A for a detailed derivation of Eq. (S11b)]. Clearly, the probability in Eq. (S11a) is fully characterized by both the
quantity ∆0 = g0/(~ω0) and the final coherent-state amplitude α(t → ∞). In particular, combining Eqs. (S1b)–(S2) and (S10), we
have

α(t → ∞) = lim
t→∞

∆∗0

(
1 − eiω0t

)︸          ︷︷          ︸
α0(t)

+
ie
~

∫ ∞

0
φ∗p(r0 + vt′) eiω0t′ dt′︸                              ︷︷                              ︸

α1

= α0(t) + α1, (S12)

which is separated into core-hole and photoelectron contributions. Incidentally, there is an apparent dependence on time through
α0(t) in Eq. (S12). However, as we show explicitly in Appendix C, such dependence cancels in P−n when inserting α(t) into
Eq. (S11a). Finally, after some algebra, the sought-after probability in Eq. (S11a) reduces to

P−n =
|∆∗0 + α1|

2n

n!
e−|∆

∗
0+α1 |

2
(S13)

(see Appendix C for details).
Because the plasmon state before photoemission is empty, the probability of detecting a photoelectron with kinetic energy

E0 + `~ω0, where E0 is the zero-plasmon photoelectron energy, is given by

P` =
|βPE|

2|`|

|`|!
e−|βPE |

2
, with βPE = ∆0 + α∗1, (S14)

where ` ≤ 0 and we have exploited the mapping n = −`. The probability distribution is thus Poissonian and characterized by an
average plasmon population |βPE|2. Incidentally, in the direct peak energy E0 = hνX − |EB| − |g0|

2/(~ω0), the difference between
the x-ray energy (hνX) and the bare core-level energy (|EB|) is shifted by an amount −|g0|

2/(~ω0) due to the photohole–plasmon
interaction (relaxation shift).
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2. Time-evolution operator: S -matrix formalism

The S -matrix formalism provides an alternative way of deriving the satellite probabilities that proves to be advantageous when
introducing optical pumping (see Sec. II B below). In the interaction picture, the time dependence of the wave function follows
from the unitary transformation |ψI(t)〉 = eiĤ0,St/~ |ψS(t)〉, where |ψS(t)〉 and Ĥ0,S = ~ω0â†â are, respectively, the wave function and
the free Hamiltonian in the Schrödinger picture [17]. Then, the Schrödinger equation transforms to i~|ψ̇I(t)〉 = Ĥ1,I |ψI(t)〉 in the
interaction picture, where Ĥ1,I = eiĤ0,St/~ Ĥ1,S e−iĤ0,St/~ = g∗(t) eiω0tâ† + g(t) e−iω0tâ. The dynamic evolution of the wave function
can be conveniently described in terms of the time-evolution or scattering-matrix operator Ŝ (t, t0) = exp

{
−(i/~)

∫ t
t0

dt′Ĥ1,I(t′)
}

via
|ψI(t)〉 = Ŝ (t, t0) |ψI(t0)〉. In the present instance, the S -matrix takes the form [2, 14, 15, 18]

Ŝ (t, t0) = eiχI(t,t0) eβ
∗(t,t0)â†−β(t,t0)â, (S15a)

where

β(t, t0) =
i
~

∫ t

t0
dt′g(t′) e−iω0t′ , (S15b)

and χI(t, t0) is a global phase that can be ignored in the context of this work. To calculate the satellite probabilities, we need the
matrix elements 〈n| Ŝ (t, t0) |m〉, which admit the analytical form [2, 14, 15, 18]

S nm(β) ≡ 〈n| Ŝ (t, t0) |m〉 = eiχI e−|β|
2/2
√

n!m!
(
β∗

)n−m
m∑

j=max{0,m−n}

(
−|β|2

) j

j!(m − j)!(n − m + j)!
, (S16)

as obtained from analogous calculations to those for Mnm in Eq. (S11b) and Appendix A. When starting from the ground state
(m = 0), Eq. (S16) takes a simple form that can also be found by exploiting the fact that Ŝ = eiχI D̂(β∗) is essentially the displacement
operator D̂(β∗) = exp

{
β∗(t, t0)â† −β(t, t0)â

}
, and thus, we find Ŝ |0〉 = eiχI |β∗〉, leading to S m0 = eiχI 〈m|β∗〉 = eiχI e−|β

∗ |2
(
β∗

)m
/
√

m!.
Given the initial condition |ψS(t0 = 0)〉 = |0〉 (i.e., |ψI(t0 = 0)〉 = |0〉), we have |ψI(t)〉 = Ŝ (t, 0) |0〉, and thus, the satellite

probability is obtained from

P−n = |〈ñ|ψS(t → ∞)〉|2 = lim
t→∞

∣∣∣∣〈ñ| e−iĤ0t/~ |ψI(t)〉
∣∣∣∣2

= lim
t→∞

∣∣∣∣〈ñ| e−iĤ0t/~Ŝ (∞, 0) |0〉
∣∣∣∣2

= lim
t→∞

∣∣∣∣∣∣∣∣∣∣∣
∞∑

m=0

〈ñ| e−iĤ0t/~ |m〉︸      ︷︷      ︸
e−imω0t |m〉

〈m| Ŝ (∞, 0) |0〉

∣∣∣∣∣∣∣∣∣∣∣
2

= lim
t→∞

∣∣∣∣∣∣∣
∞∑

m=0

e−imω0t Mnm S m0

∣∣∣∣∣∣∣
2

= lim
t→∞

e−|β(t)|2

∣∣∣∣∣∣∣
∞∑

m=0

[β∗(t)]m

√
m!

e−imω0t Mnm

∣∣∣∣∣∣∣
2

, (S17)

which coincides with Eq. (S11a), noting that β(t) ≡ β(t, 0) = α∗(t) [cf. (S10) and (S15b)]. Then, the satellite probability reduces
again to Eq. (S14).

B. Plasmon initially in a coherent state: Illuminated sample

When the plasmon mode is prepared in a coherent state by external optical pumping prior to photoemission, the satellite
probabilities can be readily calculated using the S -matrix formalism following the same procedure as in Sect. II A 2, but with
an initial plasmon state |ψI(0)〉 =

∑∞
n0=0 cn0 |n0〉, with coefficients cn0 = e−n̄0/2 n̄n0/2

0 /
√

n0! determined by the average plasmon
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population n̄0. The phase in cn0 is irrelevant because each plasmon Fock state leads to mutually orthogonal final photoelectron–
plasmon states, so we set it to zero. Then, repeating the same steps as in Eq. (S17), we find the matrix elements

〈ñ|ψS(t → ∞)〉 = lim
t→∞
〈ñ| e−iĤ0t/~ |ψI(t)〉

= lim
t→∞

∞∑
n0=0

cn0 〈ñ| e
−iĤ0t/~Ŝ (∞, 0) |n0〉

= lim
t→∞

∞∑
n0=0

cn0

∞∑
m=0

e−imω0t 〈ñ|m〉 〈m| Ŝ (∞, 0) |n0〉

= lim
t→∞

∞∑
n0=0

cn0

∞∑
m=0

e−imω0t Mnm S mn0 . (S18)

The unpumped scenario is readily recoved by setting cn0 = δn0,0. Under pumping, the amplitudes in Eq. (S18) allow us to write
the photoemission spectral probability as

Γ(E) =

∞∑
`=−∞

P` δ(E − E0 − `~ω0), (S19a)

where E is the photoelectron kinetic energy, and

P` =

∞∑
n=max{0,−`}

∣∣∣ f n
`

∣∣∣2 (S19b)

is the probability associated with satellite ` (i.e., photoelectrons that have changed their energy by `~ω0 with respect to the direct
peak at E0), expressed in terms of the squared amplitudes

∣∣∣ f n
`

∣∣∣2 =

∣∣∣∣∣∣∣limt→∞
cn+`

∞∑
m=0

e−imω0t Mn,m(∆0) S m,n+`[β(t)]

∣∣∣∣∣∣∣
2

. (S19c)

Here, we have made the dependences of the matrix elements of M and Ŝ explicit [recall that β(t → ∞) ≡ ∆0
(
1 − e−iω0t) + β1(∞)]

and used the fact that the number of excitations in the photoelectron–sample system is conserved (i.e., n0 = n + `) [14, 18]. We
remark that time enters Eq. (S19c) through the explicit exponential and also through Ŝ (t, 0), which depends on β(t), although
the overall expression is time-independent at long times [i.e., just like Eq. (S17) becomes Eq. (S14), as explicitly shown in
Appendix C]. We have verified this property upon numerical inspection. An analytical proof of this time-independence comes
from the fact that the coupling coefficient β1 (which characterizes the photoelectron–plasmon interaction) can be formulated
in terms of the mode electric field in a way analogous to PINEM (see next section), where

∣∣∣ f n
`

∣∣∣2 takes an analytical form that

coincides with
∣∣∣S n,n+`(β)

∣∣∣2 using the Ŝ coefficients defined in Eq. (S16) [14]. This result should be reproduced by Eq. (S19c) when
Mn,m = δm,n (i.e., without post-interaction plasmon state mixing 〈ñ|m〉, as no photohole is involved in PINEM). We thus argue that∣∣∣e−imω0tS m,n+`[β(t)]

∣∣∣2 is a time-independent quantity given by |S n,n+`(β1)|2 [i.e., Eq. (S16), evaluated by replacing β→ β1] (i.e.,
time independent). Consequently, Eq. (S19c) can be expressed as

∣∣∣ f n
`

∣∣∣2 =

∣∣∣∣∣∣∣cn+`

∞∑
m=0

Mn,m(∆0) S m,n+`(β1)

∣∣∣∣∣∣∣
2

. (S20)

From here, and noting that both matrix elements Mi, j and S i, j stem from displacement operators [namely, eŝ and Ŝ ;
recall Eqs. (S11b) and (S16)], and that the sum in the preceding equation is nothing but eiχI 〈n| D̂(∆∗0)D̂(β∗1) |n + `〉 =

eiχI ei Im{∆∗0β1} 〈n| D̂(β∗PE) |n + `〉, we can write ∣∣∣ f n
`

∣∣∣2 =
∣∣∣cn+` S n,n+`(βPE)

∣∣∣2 , (S21)

as presented in the main text.
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C. Equivalence of the potential and electric-field descriptions in the quasistatic limit

As outlined above, the plasmon satellite probabilities can be calculated using Eqs. (S14) and (S19b), which depend on the
key parameter βPE = ∆0 + α∗1. The specific particle geometry and composition determines the plasmon frequency ω0 and the
single-plasmon electrostatic potential φp(r), from which the two terms in these parameters are obtained as

∆0 =
g0

~ω0
=

eφp(r0)
~ω0

, (S22)

and

α∗1 = β1 = −
ie
~

∫ ∞

0
φp(r0 + vt) e−iω0tdt. (S23)

We now show that a description of the electron–plasmon interaction in terms of the single-plasmon electric field yields identical
results as the one above relying on the potential.

For simplicity, we focus on the unexcited particle and assume that the photoelectron is emitted along z (i.e., v = v ẑ) with the
hole placed at z0. Omitting the explicit dependence of the potential on (x, y), we have

β1 = −
ie
~v

∫ ∞

z0

φp(z) e−iω0(z−z0)/vdz.

Noting that this equation can be rearranged as

β1 = eiω0z0/v e
~ω0

∫ ∞

z0

dz φp(z)
∂

∂z

(
e−iω0z/v

)
= eiω0z0/v e

~ω0

[
φp(z) e−iω0z/v

∣∣∣∣∣∣∞
z0︸            ︷︷            ︸

−φp(z0) e−iω0z0/v

−

∫ ∞

z0

dz
∂φp(z)
∂z︸ ︷︷ ︸

' −Ez(z)

e−iω0z/v
]

= −
eφp(z0)
~ω0

+
e
~ω0

eiω0z0/v
∫ ∞

z0

dz Ez(z) e−iω0z/v

= −∆0 +
e
~ω0

eiω0z0/v
∫ ∞

z0

dz Ez(z) e−iω0z/v,

we find

βPE = ∆0 + β1 =
e
~ω0

∫ ∞

z0

Ez(z) e−iω0(z−z0)/v dz. (S24)

This is precisely the coupling parameter that one obtains from a description of the electron–plasmon interaction in terms of
the normalized electric field, which has been extensively used in PINEM [13, 14] for free electrons, with the difference that
in that case the lower limit of integration is extended to z0 → −∞. Equation (S24) further demonstrates that the potential and
electric-field formulations lead to identical results.

III. PLASMON SATELLITES IN PHOTOEMISSION FROM METAL NANOPARTICLES

We now apply the above formalism to metallic nanoparticles, illustrated by an analytical treatment of spheres and a more
general approach based on numerical electromagnetic solvers for arbitrary shapes. In all cases, we consider the particle size to be
small enough to justify the application of the quasistatic limit. Nevertheless, retardation effects affecting the LSP resonance and
the corresponding electric field can still be incorporated using the electric field description outlined in Sect. II C to calculate the
coupling parameter from Eq. (S24) that determines the satellite probabilities in the absence [Eq. (S14)] or presence [Eqs. (S19b)
and (S21)] of external pumping.
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A. Homogeneous nanosphere

We consider a metallic nanosphere of radius R hosting a dominant dipolar plasmon. For simplicity, we discuss the interaction
with a photoelectron emitted along the z direction from a surface point r0 = (0, 0, R) [i.e., z0 = R], such that only the plasmon
mode with polarization along z interacts with the photoelectron. For a dipolar mode, the potential outside the sphere can generally
be written as

φp(r) =
p · r
r3 =

p z
r3 (S25)

in terms of a dipole moment p = pẑ. From here, we find the parameter [see Eq. (S5)]

∆0 =
ep
~ω0R2 . (S26)

Neglecting inelastic losses, the metal is well-described in terms of a Drude-like dielectric function εm(ω) = εb − ω
2
p/ω

2 with
parameters εb = 4 and ~ωp = 9.17 eV for silver [19, 20]. Then, for the homogeneous sphere the single-plasmon normalization
condition sets the value of the dipole moment to (see Appendix B)

p =

√
3~ω0

2
R3

εb + 2
, (S27)

where the mode frequency is given by ω0 = ωp/
√
εb + 2. Combining Eqs. (S26) and (S27), we obtain

∆0 =

√
α ~c

2R ~ω0

3
εb + 2

, (S28)

where α ' 1/137 is the fine-structure constant. Furthermore, from Eqs. (S23) and (S25), changing the integration variable to
τ = ω0t′ = ω0(z − z0)/v, we find

β1 = −i∆0 a2
∫ ∞

0
dτ

e−iτ

(a + τ)2 , where a ≡
ω0R

v
. (S29)

Solving the integral, we find the solution

β1 = −i∆0F(a), (S30a)

where

F(a) = a2
∫ ∞

0
dτ

e−iτ

(a + τ)2 = a − a2 eia [π − i Ei(−ia)] , (S30b)

and Ei(z) denotes the exponential integral function [21]. Finally, combining the results in Eqs. (S28) and (S30), the photoemission
coupling parameter is found to be

βPE = ∆0 + β1 = ∆0

{
1 − ia + a2 eia [iπ + Ei(−ia)]

}
. (S31)

Based on this expression, we plot in Fig. S1 the plasmon satellite probabilities from metallic nanospheres (solid curves), as
compared with the sudden limit approximation (dashed lines, βPE = ∆0), which is smoothly approached as the photoelectron
velocity raises and a becomes increasingly small.

B. Nanoshell

We now consider a metallic spherical shell of inner and outer radii Ri and R, respectively, whose core is characterized by a
dielectric of permittivity εc. The analytical results for the homogeneous sphere directly apply to the nanoshell, except that the
mode frequency and single-plasmon dipole moment are now dependent on the ratio x ≡ Ri/R and the core permittivity. Using an
analytical expression for the electrostatic polarizability of a nanoshell [22], we find two dipolar plasmon modes (bonding and
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Fig. S1. Plasmon satellite probabilities in core-level
photoemission associated with the simultaneous exci-
tation of n = −` plasmons in a silver sphere of radius
R = 5 nm, initially prepared with n = 0. We compare
the probabilities calculated in the sudden approxima-
tion [i.e., only including the hole–plasmon interaction,
dashed lines, Eq. (S14) with βPE = ∆0] with those ob-
tained by including the photoelectron–plasmon interac-
tion as well [solid curves, Eq. (S14)].

anti-bonding) of frequencies subject to the condition [2εm(ω) + εc][εm(ω) + 2] = 2x3 [εm(ω) − εc][εm(ω) − 1]. We concentrate on
the lowest LSP frequency ω0, for which we obtain

p =

√
~ωp R3 f (x), (S32)

which combined with Eq. (S26) leads to

∆0 =

√
α ~c

R ~ω0

ωp

ω0
f (x). (S33)

Here,

f (x) =

[
(2εb + εc)Ω2

0 − 2
] [

(εb − 1)Ω2
0 − 1

]
− x3

[
(εb − εc)Ω2

0 − 1
] [

(2εb + 1)Ω2
0 − 2

]
2Ω0

√
8
(
x3 − 1

) (
AB − 2CDx3) +

(
A + 2B − 2[C + D]x3)2

,

with Ω0 = ω0/ωp, A = 2εb + εc, B = εb + 2, C = εb − εc, D = εb − 1, and the metal described by the same Drude-like permittivity
as in the homogeneous sphere.

Fig. S2. Comparison between the analytical result
[lines, via Eq. (S33), lines] for the photohole–plasmon
coupling parameter |∆0| and the same obtained via full
retarded numerical solution based on the boundary-
element method [color-matched data-points, via |∆0| =
|eφp(R)|/(~ω0), see Sect. III C below], corresponding
to silver core-shell nanoparticles with metallic shells of
different thicknesses but same outer radius R = 5 nm.

C. Small particles of arbitrary shape

Thus far, we have restricted our analysis to spherical nanoparticles for which we find closed-form analytical solutions in the
quasistatic limit. For arbitrarily shaped nanoparticles, we use an alternative approach to determine the eigenfield/eigenpotential
normalization constant by using numerical electromagnetic solvers and proceeding along the following steps:
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1. We numerically compute the EELS probability distribution Γnum
eels(ω) corresponding to a swift electron passing near the

nanoparticle, adapting the solver parameters (e.g., symmetry restrictions) and trajectory characteristics such that only
the mode that is targeted is contributes to the EELS probability. Additionally, the spectrum directly yields the plasmon
frequency ω0.

2. We fit a Lorentzian distribution profile L(ω) =
A
π

γ/2
(ω0 − ω)2 + (γ/2)2 to Γnum

eels(ω) (with fitting parameters ω0, A, and γ) and

determine the total EELS probability through Pnum
eels =

∫ ∞
0 dωΓnum

eels(ω) ≈
∫ ∞

0 dωL(ω) (≈ A for γ � ω0). This Lorentzian
fitting facilitates the integration over ω ∈ [0,∞).

3. Noting that the total EELS probability in the weak-coupling regime is also given by (see Appendix B) Peels = |αeels|
2 '∣∣∣∣∣ e

~ω0

∫ ∞

−∞

dz Ez(z) e−iω0z/v
∣∣∣∣∣2, we find a normalization constant N via

∫ ∞
0 dωL(ω) =

∣∣∣∣ e
~ω0

∫ ∞
−∞

dzNEnum
z (z) e−iω0z/v

∣∣∣∣2, where

Enum
z (z) is the z-component of the induced electric field produced upon irradiation by a light plane wave polarized along

that direction. In these expressions, we assume the photoelectron velocity and the mode polarization to be both parallel to z
as well.

4. Using the value of N found in the previous step, we calculate the coupling coefficient βPE from Eq. (S24) by plugging the
normalized mode field Ez(z) = NEnum

z (z). We also obtain ∆0 = eφp(z0)/~ω0 [see Eq. (S22)] from the potential at the core,
which is computed from φp(z0) =

∫ ∞
z0

dz Ez(z).

Appendix A: Derivation of Eq. (S11b)

The computation of the matrix elements Mnm ≡ 〈ñ|m〉 = 〈n| eŝ |m〉 in Eq. (S11b) follows from

Mnm = 〈n| eŝ |m〉 = 〈n| e∆∗0â†−∆0â |m〉

(i)
= e−|∆0 |

2/2 〈n| e∆∗0â†e−∆0â |m〉

(ii)
= e−|∆0 |

2/2
n∑

k=0

m∑
j=0

(∆∗0)k(−∆0) j

k! j!

√
n!m!

(n − k)!(m − j)!
〈n − k|m − j〉︸          ︷︷          ︸
δn−k,m− j

,

where the last expression can be readily arranged into the form of Eq. (S11b). In step (i) of the above derivation, we have
used the Baker–Hausdorff formula [23] eÂ+B̂ = eÂ eB̂ e−

1
2 [Â,B̂], valid for any pair of noncommuting operators Â, B̂ satisfying

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, and here specified for Â ≡ ∆∗0â† and B̂ ≡ −∆0â. In step (ii), we have carried out the calculations

e−∆0â |m〉 =

∞∑
j=0

(−∆0) j

j!
â j |m〉 =

m∑
j=0

(−∆0) j

j!

√
m!

(m − j)!
|m − j〉 , m ≥ j,

and

〈n| e∆∗0â† =
(
e∆0â |n〉

)†
=

n∑
k=0

(∆∗0)k

k!

√
n!

(n − k)!
〈n − k| , n ≥ k.

Appendix B: Normalization of the single-plasmon potential

In the quasistatic regime, the plasmon mode potential and its corresponding normalization for one quantum can be obtained, for
instance, through classical electrostatic theory based on a modal expansion [2, 3, 24]. Depending on the nanoparticle morphology,
the electrostatic eigenmodes and eigenfrequencies can be found either analytically [24] or numerically [25, 26]. The potential
associated with a single optical excitation then follows from imposing the appropriate bosonic commutation relations in the
standard way [2, 24].

Alternatively, if the electrostatic eigemodes are known only up to a constant (i.e., not normalized), an alternative strategy to
find the correct normalization consists in comparing the quantum-mechanical EELS probability in the weak-coupling regime with
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the total (i.e., spectrally integrated) classical electron energy-loss probability [14]. Here, we follow this approach, whose details
are outlined below for a dipolar mode of a nanosphere. The analysis is similar for other morphologies.

A quantum mechanical description of the electron–plasmon interaction in the context of EELS has been previously worked
out [1–3, 5] following similar steps as in Secs. I and II. More specifically, in the weak-coupling regime—wherein the electron
loses a single quantum of energy associated with the excitation of a single plasmon—and assuming an initially depleted optical
mode, the quantum mechanical EELS probability is given by

Peels = |αeels|
2 where αeels =

ie
~

∫ ∞

−∞

dt eiω0t φ∗p[re(t)], (B1)

with the coherent-state amplitude αeels ≡ α(t → ∞, t0 → −∞) obtaind by using the coupling energy in Eq. (S1b) with
g(t) =

∫
drφp(r) {−eδ(r − re[t])}.

For an electric dipolar mode in a sphere, the associated potential can be written as

φp(r) =
p · r
r3

in terms of the transition-dipole moment p. Considering a swift single electron moving with constant velocity v along the straight
trajectory re(t) = b x̂ + vt ẑ and passing at a distance b from the center of a self-standing nanosphere of radius R, we have

αeels =
ie
~v

∫ ∞

−∞

dz eiω0z/v p∗xb + p∗z z[
b2 + z2]3/2 .

By changing the integration variable to u = ω0z/v, this expression can be recast into1

αeels =
ieω0

~v2

p∗x

∫ ∞

−∞

du
b̄ eiu[

b̄2 + u2
]3/2 + p∗z

∫ ∞

−∞

du
u eiu[

b̄2 + u2
]3/2


=

ieω0

~v2

{
p∗x 2K1(b̄) + p∗z 2iK0(b̄)

}
, (B2)

where b̄ = ω0b/v, and Kν(x) is the modified Bessel function of the second kind of order ν [21]. Finally, because the sphere
is isotropic, we actually need to sum the contributions of the electron interaction with three dipolar modes having orthogonal
polarizations (i.e., px̂, pŷ, and pẑ, respectively), leading to the EELS probability

Peels = |αeels|
2 =

∣∣∣∣∣p2eω0

~v2

∣∣∣∣∣2 [
K2

0

(
b̄
)

+ K2
1

(
b̄
)]

. (B3)

This expression can now be compared to the well-known result from classical quasistatic dielectric theory for a metallic sphere of
radius R and permittivity εm(ω) [27],

Γeels(ω) =
4αcω2R3

πv4

[
K2

0

(
b̄
)

+ K2
1

(
b̄
)]

Im
{
εm(ω) − 1
εm(ω) + 2

}
, (B4)

and then, the total EELS probability is given by

Peels =

∫ ∞

0
dωΓeels(ω). (B5)

We describe the metal through the Drude-like permittivity εm(ω) = εb − ω
2
p/ω(ω + iγ) in the lossless limit γ → 0 with

parameters depending on the type of metal (e.g., εb = 4 and ~ωp = 9.17 eV for silver [19, 20]). Using this expression, we have

Im
{
εm(ω) − 1
εm(ω) + 2

}
→

πω0

2
3

εb + 2
δ(ω − ω0), where the mode frequency ω0 = ωp/

√
εb + 2 comes from the pole at εm(ω) = −2 in

the expressions above. Inserting this limit in Eqs. (B4) and (B5), we readily obtain

Peels =
2αcω3

0R3

v4

3
εb + 2

[
K2

0

(
b̄
)

+ K2
1

(
b̄
)]

. (B6)

Finally, Eqs. (B3) and (B6) are identical when the mode dipole is set to the value indicated in Eq. (S27), which agrees with the
single-quantum normalization found in the literature [3, 24].

1 In the second step, from the integral representation of the modified Bessel functions of the second kind [21] Kν(z) =
Γ
(
ν + 1

2
)

√
π

(
2z

)ν ∫ ∞

0
dt

cos t[
z2 + t2

]ν+1/2 , we

find
∫ ∞

−∞

du
b̄ eiu[

b̄2 + u2
]3/2 = 2K1(b̄) and

∫ ∞

−∞

du
u eiu[

b̄2 + u2
]3/2 = −

∫ ∞

−∞

du eiu ∂

∂u

(
1

√
b̄2 + u2

)
= i

∫ ∞

−∞

du
eiu

√
b̄2 + u2

= 2iK0(b̄).
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Appendix C: Derivation of Eq. (S13)

Using Eqs. (S11) and (S12), we can write

P−n = e−|α0(t)+α1 |
2

∣∣∣∣∣∣∣
∞∑

m=0

[α0(t) + α1]m

√
m!

e−imω0t Mnm

∣∣∣∣∣∣∣
2

= e−|α0(t)+α1 |
2
e−|∆0 |

2
n! |∆0|

2n

∣∣∣∣∣∣∣∣
∞∑

m=0

(
[α0(t) + α1] e−iω0t

∆∗0

)m m∑
j=max{0,m−n}

(
−|∆0|

2
) j

j!(m − j)!(n − m + j)!

∣∣∣∣∣∣∣∣
2

= e−|α0(t)+α1 |
2
e−|∆0 |

2
n! |∆0|

2n

∣∣∣∣∣∣∣∣
∞∑
j=0

j+n∑
m= j

(
[α0(t) + α1] e−iω0t

∆∗0

)m
(
−|∆0|

2
) j

j!(m − j)!(n − m + j)!

∣∣∣∣∣∣∣∣
2

, (C1)

where we have rearranged the double-sum
∑∞

m=0
∑m

j=max{0,m−n} as
∑∞

j=0
∑ j+n

m= j in the last step. Next, defining x ≡ −|∆0|
2 and

y ≡ [α0(t) + α1] e−iω0t/∆∗0 = α(t) e−iω0t/∆∗0 (for shorthand notation), we have

P−n = e−|α(t)|2 e−|∆0 |
2
n! |∆0|

2n

∣∣∣∣∣∣∣∣
∞∑
j=0

j+n∑
m= j

x j ym

j!(m − j)!(n − m + j)!

∣∣∣∣∣∣∣∣
2

1
= e−|α(t)|2 e−|∆0 |

2
n! |∆0|

2n

∣∣∣∣∣∣∣∣
∞∑
j=0

(x y) j

j!
1
n!

n∑
k=0

n!
k!(n − k)!

yk

∣∣∣∣∣∣∣∣
2

2
= e−|α(t)|2 e−|∆0 |

2
n! |∆0|

2n

∣∣∣∣∣∣∣∣ (1 + y)n

n!

∞∑
j=0

(x y) j

j!

∣∣∣∣∣∣∣∣
2

3
=

1
n!

e−|α(t)|2 e−|∆0 |
2
|∆0|

2n |(1 + y)n exy|
2

4
=

1
n!

e−|α(t)|2 e−|∆0 |
2
|∆0|

2n

∣∣∣∣∣∣1 +
α(t) e−iω0t

∆∗0

∣∣∣∣∣∣2n

exp
(
−2 Re

{
∆0 α(t) e−iω0t

})
, (C2)

where we have proceeded along the following steps:

1. Redefining the sum over m through the transformation k → m − j.

2. Using the binomial formula
∑n

k=0
n!

k!(n−k)! y
k =

(
1 + y

)n.

3. Identifying the power-series definition of the exponential function.

4. Converting back to the original variables.

After some simple algebraic manipulations, Eq. (C2) can be written in the form

P−n =
1
n!

∣∣∣∆∗0 + α(t) e−iω0t
∣∣∣2n

exp
(
−

∣∣∣∆∗0 + α(t) e−iω0t
∣∣∣2) . (C3)

Now, recalling [e.g., from Eq. (S12)] that α(t) = α0(t) + α1 = ∆∗0

(
1 − eiω0t

)
+ α1, we have∣∣∣∆∗0 + α(t) e−iω0t

∣∣∣2 =
∣∣∣∆∗0 + ∆∗0

(
e−iω0t − 1

)
+ α1 e−iω0t

∣∣∣2
=

∣∣∣(∆∗0 + α1
)

e−iω0t
∣∣∣2

=
∣∣∣∆∗0 + α1

∣∣∣2 ,

and thus, Eq. (C3) translates into the time-independent result in Eq. (S13).
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