Supporting Information

Impact of Peripheral Alkyl Chain Length on Mesocrystal Assemblies of

G2 Dendrons

Taesuk Jun,^a Hyunjun Park,^b Junsu Kim,^a Wooseop Lee,^c Hyungju Ahn,^c Woo-Dong Jang,^{b,*} Byeongdu Lee,^{d,*} and Du Yeol Ryu^{a,*}

^aDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
^bDepartment of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
^cIndustry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea.
^dAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

*Correspondence to wdjang@yonsei.ac.kr (W. J.), blee@anl.gov (B. L.), and dyryu@yonsei.ac.kr (D. Y. R.).

All reagents were purchased from Sigma-Aldrich, TCI, Alfa Aesar, Duksan, or Fluka. The commercial products of dichloromethane (CH₂Cl₂), n-hexane, tetrahydrofuran (THF), and methanol (CH₃OH) were freshly distilled before each use, and all other chemicals were used as received without further purification. A series of C_n dendrons were synthesized by a convergent method reported in a previous study using different 1-bromoalkanes with carbon numbers of n = 18, 14, 12, 10, and 8.¹ Reagents and Conditions: (i) 1-bromododecane, K₂CO₃, 18-Crown-6, THF, reflux, 72 hr; (ii) LiAlH₄, THF, 0 °C, 3 h; (iii) methyl 3,5-dihydroxybenzoate, PPh₃, DIAD, THF, 0 °C, sonic 1 h; (iv) PPh₃, phthalimide, DIAD, THF, 0 °C, sonic 1 h; then H₂NNH₂·H₂O, THF/MeOH (5/1), reflux, 1 h. (v) 6 M NaOH, THF, reflux, 24 h.

Reference

1. T. Jun, H. Park, S. Jeon, S. Jo, H. Ahn, W.-D. Jang, B. Lee and D. Y. Ryu, *Journal of the American Chemical Society*, 2021, **143**, 17548-17556.

Supporting Figures

Fig. S1 ¹H NMR spectra of (a) C_{18} , (b) C_{14} , (c) C_{12} , (d) C_{10} , and (e) C_8 dendrons in CDCl₃ solvent.

Fig. S2 MALDI-TOF mass spectra of (a) C_{18} , (b) C_{14} , (c) C_{12} , (d) C_{10} , and (e) C_8 dendrons.

Fig. S3 DSC thermograms of the C_n dendrons prepared by (a) -20 and (b) -1 °C/min cooling processes, measured at the heating rate of 20 °C/min from -40 to 140 °C. The numbers on the peaks denote the magnitude of enthalpic change $(|\Delta H|)$ at transitions as a unit of kcal/mol.

Fig. S4 SAXS intensity profiles for as-cast (a) C_{18} , (b) C_{14} , (c) C_{12} , (d) C_{10} , and (e) C_8 dendrons recorded at target temperatures during the stepwise heating process with a constant interval of 5 min considering the relatively rapid kinetics of dendrons in forming the mesocrystal structures.

Closed symbol (●): – 20 °C/min Open symbol (○): – 1 °C/min

Fig. S5 N_{agg} s of (a) C_{18} , (b) C_{14} , (c) C_{12} , (d) C_{10} , and (e) C_8 dendrons during the fast- and slow-cooling processes. The closed and open symbols denote N_{agg} s from the fast- and slow-cooling processes, respectively, and the dotted lines guide initial rates of $|dN_{agg}/dT|$ for the C_n dendrons.

Supporting Table

Sample	C ₁₈ dendron	C ₁₄ dendron	C ₁₂ dendron	C ₁₀ dendron	C ₈ dendron
M _w (g/mol)	1944	1607	1439	1271	1102
ρ (g/cm ³)	0.970	0.973	0.975	0.978	0.981
Phase at fast cooling	BCC	BCC	$\operatorname{Col}_h{}^d$	A15	A15
^{\$\bar{R}\$} (nm) at 110 & 30 °C ^a	2.273 / 2.440	2.172 / 2.325	-	2.074 / 2.184	1.962 / 2.064
N _{agg} at 110 & 30 °C ^b	14.64 / 18.23	15.55 / 19.11	-	16.52 / 20.09	16.86 / 19.67
<i>a</i> (= <i>b</i>), <i>c</i> (nm) at 110/30 °C	4.616, 4.616 / 4.956, 4.956	4.411, 4.411 / 4.722, 4.722	-	6.687, 6.687 / 7.041, 7.041	6.325, 6.325 / 6.654, 6.654
$\Delta V/V$ c	0	0	-	0.0119	0.0119
Phase at slow cooling	BCC	BCC	BCC / A15	σ	A15
^ℝ (nm) at 110 & 30 °C	2.269 / 2.437	2.170 / 2.320	2.258 / 2.093	2.071 / 2.151	1.961 / 2.060
N _{agg} at 110 & 30 °C	14.73 / 18.15	15.59 / 19.00	16.09 / 19.46	16.47 / 19.50	16.88 / 19.55
<i>a</i> (= <i>b</i>), <i>c</i> (nm) at 110 & 30 °C	4.608, 4.608 / 4.950, 4.950	4.407, 4.407 / 4.712, 4.712	4.586, 4.586 / 6.748, 6.748	12.380, 7.283 / 12.859, 7.564	6.322, 6.322 / 6.641, 6.641
$\Delta V/V$	0	0	0 / 0.0118	0.0412	0.0119

Table S1. Structural analysis of representative supramolecular dendron assemblies

$$V = 4\pi R^3/3 = n^{-1} \sum_{i=1}^n V_i$$
, where V_i is the *i*th volume of *n* particular volume volume

^aMean particle radius (R) was calculated by ^bNagg = $R^3 N_A \rho / (3M \square \square_w)$, where N_A , ρ , and M_w denote Avogadro's number (6.022×10²³/mol), the density measured at 30 °C, and the molecular weight of each dendron, respectively.

$$_{V}\Delta V/V = n^{-1}\sum_{i=1}^{n} |V_{i} - V|/V.$$

^cParticle size diversity

^dSince the Col_h structure is not a sphere-packing phase.