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SUPPLEMENTARY NOTE S1: DERIVATION OF EQ. (4) OF THE MANUSCRIPT

Here we provide details on the derivation of the capture frequency kc. The approach we used is
often referred as Smoluchowski-like description and it was extensively used in estimating capture
frequency in nanopores [S1–S3]. Other approaches were used in the literature to get similar results
(see, among others [S4–S6]).
Let us consider a dilute solution of nanoparticles. The conservation equation for the solute con-

centration C(r, t) is

∂C

∂t
= −∇ · J . (S1)

where J is the flux. In general, the flux has three components: i) the diffusive, ii) the phoretic, due
to external forces acting on the solute particle and iii) the advection due to the solvent motion (that,
it nanoconfined systems, can be induced by, for instance, electroosmosis [S7]). In this manuscript,
we consider only the diffusion contribution that, for dilute solution, is

J = −D∇C (S2)

with D the diffusion coefficient. Eqs. (S1,S2) can be solved to get the time evolution of the concen-
tration C and the flux J in the entire domain, once boundary and initial condition are defined.

2D case. The idealized system used to get an estimation for average dwell time τ for the surface
diffusion (see Fig. 2b and Eq. (4), of the manuscript) is the 2D circular crown reported in Fig.S1.
In the limit of large cavities and small aperture, we expect that this approach would provide a
reasonable estimation of the capture rate independent of the actual shape of the cavity and of the
apertures. We assume that the geometry has a radial symmetry with respect the origin of a Oxy
plane. We indicated r as the distance from the origin and our domain is a circular crown bounded
by an inner circle of diameter de, and an external circle of diameter dext. Our aim is to get an
expression for the capture frequency in this simplified case. Thanks to the radial symmetry, all the
quantities involved in Eqs. (S1,S2) depend only on r. Morevoer, we consider only cases where the
diffusion coefficient D is homogeneous and constant. Consequently, Eqs. (S1,S2) reduce to

∂C

∂t
=

D

r

∂

∂r

(
r
∂C

∂r

)
(S3)

that, in the stationary case and integrating over r becomes

D
dC(r)

dr
=

A2D

r
, (S4)

with A2D a constant to be determined from the boundary conditions. It it worth noting that the
Eq. (S4) is the radial component of the flux J, so, integrating A/r on the surface of the inner
boundary, we get the number of particles crossing the inner circle for unit of time, i.e. the capture
frequency. In formula, this is expressed as

kc = 2πA2D . (S5)

Here we use an adsorbing boundary at de while we assume that the concentration is fixed at the
external boundary dext, i.e.

C(t, de) = 0 , C(t, dext) = C0 , (S6)
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so, after simple manipulation, we get

A2D = −C0D ln
dext
de

. (S7)

and, consequently

kc =
2πDC0

ln dext

de

(S8)

which is Eq.(4) of the manuscript.

3D case. Finally, we consider the 3D case. Now the idealized system is constituted by the domain
between two concentric spheres: an adsorbing sphere of diameter de and external sphere of diameter
dext where the concentration C0 is fixed. Similarly, in 3D we assume that the system has radial
symmetry. The equations (S3-S4) are now

∂C

∂t
=

D

r2
∂

∂r

(
r2

∂C

∂r

)
, D

dC(r)

dr
=

A3D

r2
, (S9)

and the capture rate, obtained integrating the radial flux on a hemisphere, is

kc,3D = 2πA3D . (S10)

Unlike the 2D case, the A3D now converges to a finite value for dext → ∞ getting the standard
Smoluchowski result

kc,3D = πDC0de . (S11)

This derivation is widely employed in capture and escape problems (for details and further applica-
tions, see, e.g. [S1–S3]). To obtain the formula proposed by Grigoriev [S8], the capture rate on a
disk must be used. This amounts to a substitution of the prefactor π in Eq. (S11) with 2 [S9].

Adsorbing 
boundary

Fixed 
concentration

FIG. S1. Domain and boundary condition for diffusion equation in 2D. The domain, light gray, is a circular
crown bounded by an inner circle of diameter de, where particles are adsorbed, and external circle of diameter
dext where a fixed concentration C0 is imposed.
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SUPPLEMENTARY NOTE S2: DERIVATION OF EQ. (8) OF THE MANUSCRIPT

In this section, we provide a brief derivation of the average escape-time formula from an LJ well
(Eq.(8) of the main text). With reference to Fig.S2, the escape process from a one dimensional
LJ-well can be defined in the following setup: a particle is released at the minimum of LJ-well
(x0 = 21/6σ), and it performs a diffusion on the interval [0, b]. The boundary conditions require: 1)
absorption at x = b (removal of the particle as soon as it reached x = b), and 2) reflection at x = 0.
In the general formulation [S10, S11], the average first-arrival time at the boundary b for a particle

released in x0, is related to the survival probability,

S(x0, t) =

∫ b

0

dx p(x, t|x0) , (S12)

where p(x, t|x0) denotes the probability density that a particle emitted in x0 at time t = 0 is detected
in x at time t. By definition, S(x0, t) is the probability that, at the time t, the particle has not yet
left the interval [0, b]. Indeed, the integral

τ(x0) =

∫ ∞

0

dt S(x0, t) (S13)

is exactly the average escape-time from the interval [0, b], if the particle starts from x0. Without
loss of generality we can safely drop the “0” index in the following.
S(x, t) is known to satisfy the backward Kolmogorov equation [S10]

∂S

∂t
= eβU(x)D

∂

∂x

[
e−βU(x) ∂S

∂x

]
(S14)

with the boundary conditions S′(0, t) = 0 (reflecting) and S(b, t) = 0 (absorbing). A differential
equation for τ(x) is obtained by integrating Eq.(S14) in the interval 0 ≤ t < ∞, and taking into
account that S(x,∞) = 0 and S(x, 0) = 1, thus

d

dx

[
eβU(x) dτ

dx

]
= −e−βU(x)

D
. (S15)

To find a unique solution, the above equation has to be completed with the obvious boundary values
τ ′(0) = 0 and τ(b) = 0, stating that the particle is reflected by the boundary x = 0 and that it is
instantaneously absorbed at x = b. We are interested in the average first-exit time at x = b, from
x = x0. A first integration in the interval [0, x] provides,

eβU(x) dτ

dx
− eβU(x) dτ

dx

∣∣∣∣
0

= −
∫ x

0

dy
e−βU(y)

D
(S16)

where the second term of the l.h.s. vanishes because of the boundary condition, τ ′(0) = 0. A further
integration, from x0 to b, yields

τ(x0) =
1

D

∫ b

x0

dxeβU(x)

∫ x

0

dye−βU(y) (S17)

which is exactly Eq.(8) of the main text for b = 4σ and x0 = 21/6σ. As a final note, we remind the
reader that here we used the generic symbol τ while in the main text τ is used for the dwell time
in the cavity and τs is used for the typical time that a particle is trapped at the solid wall by the
LJ-well.
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FIG. S2. Sketch of the physical setup used to compute the mean first exit-time from a LJ-well. A particle
performing thermal diffusion is initially placed in the minimum of the LJ-potential, it is absorbed (removed)
as soon as it crosses the boundary x = b. The other boundary, x = 0, has to be considered reflecting due to
the high repulsion exerted by the steep tail of the LJ-potential.
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a) b) c)

FIG. S3. Generation of confining potential for the Brownian model. a) The cavity profile is modelled as a
sequence of connected segments in the plane ρ−z. The two extreme points of the i-th segment are indicated
as Pi and Pi+1. These coordinates define the edges of the geometry cross-section. The confining geometry
is obtained by the rotation of this line around the z axis. For the cavity geometry used in this study, four
points must be specified. For instance, in the case of the cavity of Fig.1 of the manuscript (dc = 400 nm,
de = 50 nm), the points were P1 = (25, 200), P2 = (200, 200), P3 = (200,−200), P4 = (25,−200). b) The
wall-particle interaction potential depends on the distance between the particle and the wall. To calculate
the minimum distance of a point from the wall, we first calculate the distance between the point and each
segments and, then, we select the minimum one, see red and blue points. c) Three examples of distance
between a point and a segment. It is worth noting that the minimum distance is not always the length of the
segment starting from the point and normal to the segment (as for point B) but it can also be the distance
between the point and one of the two segment extremes as for points A and C.
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FIG. S4. Additional data on dwell time dependence with respect to particle-wall interaction. The simulations
were run for a constant cavity volume with a varying aperture diameter de. In all cases, the trend is the
same: the dwell time τ reaches a plateau for attractive wall, ϵ/kBT > 4. This plateau corresponds to a 2D
surface diffusion process (see Fig.1 of the main text). Moreover, it is apparent that, as expected, the dwell
time τ increases when the exit diameter de decreases.
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FIG. S5. Effect of the size σmu of the mobility reduction region. In order to determine the ways in which
the analyte’s overall dwell time τ is impacted by the size of the region in which mobility reduction occurs,
additional simulations were performed using a set of fixed dimensional (dc = 400nm, de = 50nm) and
mobility reduction (f = 0.5, α = 0.5) conditions, but with a varying value for σµ. The horizontal axis
report 2σµ/dp, i.e. the σµ normalized with the radius of the particle. Left panel refers to highly attractive
analyte-wall interaction (ϵ = 6kBT ) while right panel to repulsive (ϵ = 0.1kBT ). In both cases, the plateau
refer to a situation with identical potential well-depths but without mobility reduction.
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Cavity diameter dc Repulsive
(ϵ = 0.1kBT )
5 data points

Attractive
(ϵ = 8kBT )
5 data points

Attractive
(ϵ = 8kBT )
4 data points

400 nm 0.87 0.42 0.80

300 nm 0.82 0.11 0.45

200 nm 0.63 0.19 0.52

TABLE S1. Agreement between theoretical prediction and numerical data. To provide a more quantitative
idea of how much the simulation data on the dwell time τ varies from the theoretical projections, we
calculated the R2 coefficient. Repulsive conditions (ϵ = 0.1kBT , 3D-bulk diffusion scenario) are compared
with Eq.(4) of the main text while attractive case (ϵ = 8kBT , 2D-surface diffusion scenario) are compared
with Eq.(6) of the main text. In the case of repulsive particle-wall interactions, there is a relatively strong
agreement between the theoretical prediction and the numerical results as demonstrated by R2 > 0.7 values.
However, as expected from visual inspection of Fig.2b of the main text, the theoretical prediction fails
in reproducing the numerical data in the entire range of cavity aperture diameters (R2 < 0.5) for highly
attractive interactions. Excluding the smallest aperture size (i.e calculating the R2 including only 4 data
points), the agreement between the theoretical prediction and the numerical data improves.
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