Supporting Information

Direct deposition of dense YSZ/Ni-YSZ thin-film bilayers on porous anodesupported cells with high performance and stability

Katherine Develos-Bagarinao,*^a Toshiaki Yamaguchi^b and Haruo Kishimoto^a

^{a.} Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, AIST West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

^{b.}Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan

^{*} Corresponding author. Email: develos-bagarinao@aist.go.jp

(a)

Figure S1. Typical plan-view SEM images depicting the YSZ thin film surface morphologies deposited on AFL/anode-supported cells a) without and b) with NiO-YSZ nanocomposite layer. Without the NiO-YSZ nanocomposite layer, YSZ grains exhibit a bimodal grain distribution, i.e., less homogeneous layer.

PLD-YSZ, as-prepared

Figure S2. SIMS elemental mapping of ⁵⁸Ni⁻, ⁵⁹Co¹⁶O⁻, ⁸⁸Sr¹⁶O⁻, ⁹⁴Zr¹⁶O⁻ and ¹⁴⁰Ce¹⁶O⁻ normalized by ¹⁶O⁻ for PLD-5 (PLD-YSZ layer).

Screen-printed YSZ, as-prepared

Figure S3. SIMS elemental mapping of ⁵⁸Ni⁻, ⁵⁹Co¹⁶O⁻, ⁸⁸Sr¹⁶O⁻, ⁹⁴Zr¹⁶O⁻ and ¹⁴⁰Ce¹⁶O⁻ normalized by ¹⁶O⁻ for SP-2 (screen-printed YSZ layer).

158Gd 160/160

94Zr 160/160