# **Supporting Information**

Proposal of Spin Crossover as A Reversible Switch of Catalytic Activity for Oxygen Evolution Reaction in Two Dimensional Metal-Organic Frameworks

Min Ren, ‡<sup>a</sup> Xiangyu Zhu, ‡<sup>b</sup> Qiquan Luo, \*<sup>b</sup> Xingxing Li\*<sup>a,c,d</sup> and Jinglong Yang<sup>a,c,d</sup>

## Stability under electrochemical conditions

The formation energy ( $E_f$ ) and the dissolution potential ( $U_{diss}$ )<sup>1-3</sup> are defined as:

$$E_{f} = (E_{total} - E_{substrate} - 2E_{Co})/2$$
$$U_{diss} = U_{diss} \circ (bulk) - E_{f}/ne$$

where  $E_{Co}$  is the total energy of the Co atom in its most stable bulk structure,  $E_{total}$  and  $E_{substrate}$  are the energies of Co(TCSA) system and its substrate.  $U_{diss^o}$  (bulk) and n are the standard dissolution potential of bulk metal and the number of electrons involved in the dissolution, respectively. Accordingly, systems with  $E_f < 0$  eV are considered to be thermodynamically stable, and materials with  $U_{diss} > 0$  V vs SHE are evaluated as electrochemically stable. In our calculation,  $E_{Co}$  is -7.04 eV, similar to the previous study. Meanwhile, the  $E_f$  are -2.86V and -3.24V to the HS and LS states, respectively.

## **Microkinetic Model**

The current density was simulated by the microkinetic model developed by Hansen et

al.<sup>4</sup>. The OER steps adhere to the following equations:

$$H_{2}O + * \stackrel{k_{1}}{\underset{k_{-1}}{\overset{k_{1}}{\underset{k_{-1}}{\overset{k_{1}}{\underset{k_{-1}}{\overset{k_{2}}{\underset{k_{-2}}{\overset{k_{2}}{\underset{k_{-2}}{\overset{k_{2}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-$$

where  $k_i$  and  $k_{-i}$  are the forward and backward reaction rate constants, respectively. For an electrochemical step, the equilibrium constant could be calculated by

$$K_i = \exp\left(-\frac{e(U-U_i)}{k_B T}\right)$$

where  $U_i$  is the reversible potential, and the rate constant  $k_i$  can be expressed as:

$$k_{i} = A_{i} \exp\left(-\frac{E_{a,i}}{k_{B}T}\right) \exp\left(-\frac{e\beta_{i}(U-U_{i})}{k_{B}T}\right)$$

where  $E_{a,i}$  is the activation free energy at the reversible potential of the step, the prefactor  $A_i$  is set to  $1 \times 10^9$ ,  $k_B$  is the Boltzmann constant, the temperature T is 298.15 K and  $\beta_i$  is set to be 0.5. According to previous study, the activation free energy is generally small and calculated by 0.26 eV as usual.<sup>5, 6</sup>

#### **Constant potential method**

This method implements VASPsol to model electrochemical electrode/solution interface and establish the relationship between charge and electrode potential<sup>7</sup>.

$$U_{q}(V/SHE) = -4.6 - \phi_{q}(f)/eV$$

where  $\phi_q(f)$  is the work function of charge system and 4.6 V is the work function of H<sub>2</sub>/H<sup>+</sup> couple under standard conditions<sup>8-10</sup>.

At the fixed applied potential, the electrode potential referenced to SHE scale is

changed by pH values. The relationship is given by

$$U_{\rm RHE} = U_{\rm SHE} + k_{\rm B}T\ln(10)\rm{pH/e}$$

Therefore, by adjusting the charge numbers of the system, the energies under specific potentials could be calculated.

According to Neurock methods,<sup>11</sup> the potential-dependent charge system energy could be corrected by

$$E_{\text{free}}(U) = E_{\text{DFT}} + \int_0^q \langle \overline{V_{tot}}(Q) \rangle \, dQ - q\phi_q(f)$$

where  $\langle \overline{V_{tot}}(Q) \rangle$  refers to the average potential in the cell.

The total free energy values ( $E_{\text{free}}$ ) and the electric potential (U) could be fitted to a quadratic function form (**Figure S5**), consistent with a capacitor created by the charged-slab/background-charge system, written as

$$E(U) = -\frac{1}{2}C(U - U_0)^2 + E_0$$

where  $U_0$  is the potential of zero charge (U<sub>PZC</sub>),  $E_0$  is the energy at the PZC, and C is the capacitance of the surface. From the quadratic functions, the potential-dependent energy at any electrode potential could be provided.



**Fig. S1** Energy diagrams of the calculated band centers of d orbitals for the HS state and LS state with PBE+U method, respectively. The number denotes the occupation of spin-up and spin-down orbitals. Red and blue short bars denote the band center with spin-up and spin-down, respectively.



**Fig. S2** Phonon band structures of (a) the LS state and (b) the HS state in Co(TCSA), respectively.



Fig. S3 Schematic of the formation of O\* species on the Co(TCSA) in the LS state



**Fig. S4** The projected density of states (PDOS) for (a) the HS state and (b) the LS state, respectively. While (c) and (d) are those with HO\* intermediates. The blue lines and red lines represent the HS and LS states, respectively.



**Fig. S5** Total energies of bare (red), HOO\* (blue), O\* (green), and HO\* (yellow) as a function of applied potential U. Calculated total energies (triangle) and polynomial fits (solid lines) are shown.



Fig. S6 The pH-dependent Gibbs free energy of  $O^*$  and  $OH^*$  on the LS state under

CPM.

#### REFERENCES

- 1. J. Greeley and J. K. Nørskov, *Electr. Acta.*, 2007, **52**, 5829-5836.
- X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen and S. Huang, J. Am. Chem. Soc., 2020, 142, 5709-5721.
- Y. Zhou, L. Sheng, Q. Luo, W. Zhang and J. Yang, J. Phys. Chem. Lett., 2021, 12, 11652-11658.
- V. Viswanathan, H. A. Hansen, J. Rossmeisl and J. K. Norskov, *J. Phys. Chem. Lett.*, 2012, 3, 2948-2951.
- H. Li, S. Kelly, D. Guevarra, Z. Wang, Y. Wang, J. A. Haber, M. Anand, G. T. K.
  K. Gunasooriya, C. S. Abraham, S. Vijay, J. M. Gregoire and J. K. Nørskov, *Nat. Catal.*, 2021, 4, 463-468.
- Y. Zhao, J. Qu, H. Li, P. Li, T. Liu, Z. Chen and T. Zhai, *Nano. Lett.*, 2022, 22, 4475-4481.
- 7. M. Fishman, H. L. Zhuang, K. Mathew, W. Dirschka and R. G. Hennig, *Phys. Rev. B*, 2013, **87**.
- 8. S. Trasatti, *Electr. acta*, 1991, **36**, 1659-1667.
- 9. Z. Duan and G. Henkelman, *Langmuir*, 2018, **34**, 15268-15275.
- 10. Z. Duan and G. Henkelman, J. Phys. Chem. C, 2020, 124, 12016-12023.
- 11. J. S. Filhol and M. Neurock, Angew. Chem. Int. Ed., 2006, 118, 416-420.