Electronic Supplementary Information for

Ferromagnetic and half-metallic phase transition by doping in onedimensional narrow-bandgap semiconductor W_6PCI_{17}

Yusen Qiao^{a,b} and Huabing Yin*^{a,b}

^a Joint Center for Theoretical Physics, Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

^b International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

*Authors to whom correspondence should be addressed: <u>yhb@henu.edu.cn</u>

Fig. S1. (a) Calculated absorption spectrum of 1D single-chain W_6PCl_{17} at the HSE06 level with the polarization direction along the chain direction.

Fig. S2. (a) Electronic band structures of 1D single-chain W_6PCl_{17} under the strains varying from -6% to 6% along the z directions. The band gaps are highlighted in blue. The Fermi level is set at zero.

Fig. S3. Possible doping AFM configurations of 1D single-chain W₆PCl₁₇: AFM1, AFM2, and AFM3.

Fig. S4. The spin-polarized band structures of single-chain W_6PCl_{17} calculated with the PBE functional at different electron concentrations *n*: 3.4, 3.8, 4.2, 4.6, and 5.0 electron/f.u., which correspond to $5.17 \times 10^{14}/\text{cm}^2$, $5.78 \times 10^{14}/\text{cm}^2$, $6.38 \times 10^{14}/\text{cm}^2$, $6.99 \times 10^{14}/\text{cm}^2$, and $7.60 \times 10^{14}/\text{cm}^2$, respectively. The blue and red solid lines denote the spin-up and spin-down components, respectively.

Fig. S5. The PDOS of single-chain W_6PCl_{17} projected onto *d* orbitals of six W atoms in the primitive cell at different electron concentrations: 0.2, 1.8, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, and 5.0 electron/f.u., which correspond to 0.3×10^{14} /cm², 2.74×10^{14} /cm², 3.95×10^{14} /cm², 4.56×10^{14} /cm², 5.17×10^{14} /cm², 5.78×10^{14} /cm², 6.38×10^{14} /cm², 6.99×10^{14} /cm², and 7.60×10^{14} /cm², respectively.