## **Supporting Information**

## Self-templated construction of hollow trimetallic MnNiCoP yolk-shell spheres assembled with nanosheets as a satisfactory electrode material for hybrid supercapacitors

Majid shirvani, Saied Saeed Hosseiny Davarani\*

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran. E-mail: ss-hosseiny@sbu.ac.ir; Fax: +98 21 22431661; Tel: +98 21 22431661



Fig. S1 (a) GCD profiles of the MnNiCo-LDH@NiF electrode at different current densities (b) Rate performance of the MnNiCo-LDH@NiF electrode.



**Fig. S2** (a) GCD profiles of the NiCo-gly@NiF electrode at different current densities (b) Rate performance of the NiCo-gly@NiF electrode.



Fig. S3 Durability of the MnNiCo-LDH@NiF electrode at 5 Ag<sup>-1</sup>.



Fig. S4 FE-SEM images of the MnNiCoP electrode material after 14,000 GCD cycles.



**Fig. S5** (a) CVs of the bare nickel foam, Co-gly@NiF, MnCo-LDH@NiF, and MnCoP@NiF electrodes at 40 mVs<sup>-1</sup> (b) Charge-discharge curves of the Co-gly@NiF, MnCo-LDH@NiF, and MnCoP@NiF electrodes at 1 Ag<sup>-1</sup> (c) CVs of the MnCoP@NiF electrode from 10 to 100 mVs<sup>-1</sup> (d) The relative contribution of the capacitive and diffusion-controlled charge storage in the prepared MnCoP@NiF electrode at different scan rates



**Fig. S6** (a) GCD profiles of the MnCoP@NiF electrode at different current densities (b) Rate performance of the MnCoP@NiF electrode (c) Nyquist plots of the MnCoP@NiF and MnCo-LDH@NiF electrodes (in the frequency range of 100 kHz to 1 Hz; equivalent circuit in inset) (d) Durability of the MnCoP@NiF electrode at 5 Ag<sup>-1</sup>.



Fig. S7 (a) GCD profiles of the MnCo-LDH@NiF electrode at different current densities (b) Rate performance of the MnCo-LDH@NiF electrode.



**Fig. S8** (a) GCD profiles of the Co-gly@NiF electrode at different current densities (b) Rate performance of the Co-gly@NiF electrode.



Fig. S9 Durability of the MnCo-LDH@NiF electrode at 5 Ag-1.



**Fig. S10** (a) CVs of the NiCoP@NiF electrode at various scan rate of 10-100 mVs<sup>-1</sup> (b) GCD curves of the NiCoP@NiF electrode at various current densities of 1-20 Ag<sup>-1</sup> (c) Specific capacity vs. current density of the NiCoP@NiF electrode. (d) Durability of the NiCoP@NiF electrode at 5 Ag<sup>-1</sup>.



**Fig. S11** (a) CVs of the AC-based electrode at various scan rate of 10-100 mVs<sup>-1</sup> (b) GCD curves of the AC-based electrode at various current densities of 1-20 Ag<sup>-1</sup> (c) Specific capacitance vs. current density of AC-based electrode.

Table S1 Comparison of the performance of the MnNiCoP electrode material with other previously reported materials

| Composition                           | Capacity(mAhg <sup>-1</sup> ) | Cycles,<br>retention | Rate capability              | ED(Wkg <sup>-1</sup> ) | Reference |
|---------------------------------------|-------------------------------|----------------------|------------------------------|------------------------|-----------|
| Ni <sub>2</sub> P/NiCoP               | 205.92                        | 3000, 89.2%          | 75.5% at 20 Ag <sup>-1</sup> | 44.5                   | 1         |
| O-CoxNiyP                             | 199.19                        | 5000, 95.1%          | 66.7% at 20 Ag <sup>-1</sup> | 47.5                   | 2         |
| Cu-Co-P                               | 110.6                         | 10000, 89%           | 83.1% at 10 Ag <sup>-1</sup> | 41.3                   | 3         |
| NiCoP/NC                              | 172.18                        | 8000, 75.5%          | 77.4% at 16 Ag <sup>-1</sup> | 52.5                   | 4         |
| NiCoP                                 | 182.91                        | 5000, 80.7%          | 66% at 30 Ag <sup>-1</sup>   | 41.3                   | 5         |
| Ni <sub>0.4</sub> Mn <sub>1.6</sub> P | 176.66                        | 2000, 75%            | -                            | 21.1                   | 6         |
| Ni-Co-P-3                             | 213.1                         | 5000, 85%            | 86% at 20 Ag <sup>-1</sup>   | 48.4                   | 7         |
| MnNiCoP                               | 291.24                        | 14000, 91.30%        | 80% at 20 Ag <sup>-1</sup>   | 57.03                  | This work |

## References

- 1 Z. Li, K. Ma, F. Guo, C. Ji, H. Mi, P. Qiu and H. Pang, Mater. Lett., 2021, 288, 129319.
- 2 S. Jiang, M. Pang, R. Liu, J. Song, R. Wang, N. Li, Q. Pan, H. Yang, W. He and J. Zhao, *J. Alloys Compd.*, 2022, **895**, 162451.
- 3 Y. Zhu, P. Lu, F. Li, Y. Ding and Y. Chen, ACS Appl. Energy Mater., 2021, 4, 3962-3974.
- 4 T. Zhao, C. Liu, F. Yi, X. Liu, A. Gao, D. Shu and J. Ling, Appl. Surf. Sci., 2021, 569, 151098.
- 5 P. Li, M. Zhang, H. Yin, J. Yao, X. Liu and S. Chen, Appl. Surf. Sci., 2021, 536, 147751.
- 6 Y. Wang, L. Chen, S. Lin, G. Wu, J. Luo, H. Yang and H. Qin, *Mater. Today Commun.*, 2021, 26, 102057.
- 7 G. Qu, P. Sun, G. Xiang, J. Yin, Q. Wei, C. Wang and X. Xu, Appl. Mater. Today, 2020, 20, 100713.