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Experimental

Chemicals and Materials.

All reaction reagents and chemicals were obtained and used without further purification. Bismuth 

nitrate pentahydrate (Bi(NO3)3·5H2O), 20 wt% commercial Pt/C were purchased from Aladdin. 

Cu(NO3)2·3H2O, methanol anhydrous (CH3OH or MeOH), 1,3,5-benzene tricarboxylic acid 

(H3BTC) were purchased from Sinopharm Chemical Reagent Co. Ltd. N, N-dimethylformamide 

(DMF) and potassium hydroxide (KOH) were purchased from Tianjin Zhiyuan Reagent Co., Ltd. 

Isopropyl alcohol was purchased from Shanghai Chemical Reagent Co. Ltd. Nafion (5 wt%) was 

purchased from Sigma-Aldrich. Dicyandiamide (DCD) was purchased from Macklin.  

Materials Synthesis. 

Synthesis of BiCu-MOF, Bi-MOF, and Cu-BTC. The BiCu-MOF was synthesized by a modified 

solvothermal method reported in the literature1, 2. H3BTC (750 mg), Bi(NO3)3·5H2O (150 mg), and 

Cu(NO3)2·3H2O (2.9 mg) were dissolved in a 60 mL mixed solvent containing MeOH/DMF (1:4, 

v/v), followed by 10 min ultra-sonication. The resulting homogeneous solution was transferred to a 

Teflon-lined stainless-steel autoclave. After the autoclave was sealed and then heated at 120 ℃ for 

24 h in an oven, it was cooled to room temperature. The product was collected by centrifugation 

and washed several times with MeOH, and then dried in a vacuum oven at 60 ℃ to obtain the light 

blue powder. The synthesis of Bi-MOF was similar to the above method, except that 

Cu(NO3)2·3H2O was not added. The precursor of Cu/CN, Cu-BTC, was synthesized by grinding a 

mixture of Cu(NO3)2·3H2O and H3BTC.

Synthesis of CuSACuNP/BiCN, Bi/CN, Cu/CN. The as-prepared BiCu-MOFs and dicyandiamide 

(DCD) were respectively placed in two porcelain boats with a mass ratio of 1:2 and heated to 1000 

℃ for 4 h in a stream of Ar. Pyrolysis of Bi-MOF and Cu-BTC to Bi/CN and Cu/CN was consistent 

with the above method. 

Electrocatalytic Measurements

The electrochemical ORR performance of the catalysts was measured on the electrochemical 

workstation (760E, CH Instrument) at room temperature with a standard 3-electrode system. An 

Ag/AgCl (saturated KCl solution) and a graphene rod served as the reference and counter electrodes, 

respectively. According to the Nernst equation (ERHE = EAg/AgCl + 0.197 V + 0.0591 × pH), all 

measured potentials were converted to standard reversible hydrogen electrodes (RHE). The working 

electrode was a rotating disk electrode (RDE, 0.196 cm2) or a rotating ring-disk electrode (RRDE, 

0.196 cm2), and the electrolyte was 0.1 M KOH. 

The electrocatalysis ink was prepared as follows. 3 mg of the catalysts were mixed with 770 

μL of isopropanol / deionized water (1:1, v/v) and 30 μL 5 wt% Nafion solution. The mixture was 

then sonicated for 30 min to form a homogeneous black ink. Next, 10 μL of ink was dropped onto 



the electrode and dried under an infrared lamp. The catalyst loading amount was 0.19 mg cm-2.

Cyclic voltammetry (CV) was performed in Ar- and O2-saturated 0.1 M KOH solution with a 

sweep rate of 100 mV s-1. Linear sweep voltammetry (LSV) was measured in an O2-saturated 0.1 

M KOH solution with a sweep rate of 5 mV s-1. RRDE tests were conducted at different rotating 

speeds from 400 to 1600 rpm. Half-wave potential (E1/2) referred to the potential corresponding to 

half of the limiting current density in LSV curves. The Koutecky−Levich (K−L) equation was used 

to calculate the electron transfer number:
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where J is the measured disk current density, JK is the kinetic limiting current density, n is the 

electron transfer number, F is the Faraday constant (96485 C mol-1); C0 and D0 represent the 

saturated concentration, and diffusion coefficient of O2 in the 0.1 M KOH, respectively; ν is the 

kinetic viscosity of the electrolyte (0.01 cm2 s-1), and ω represents the angular velocity (rpm). In 0.1 

M KOH solution: C0 = 1.2 × 10−3 mol L−1, D0 = 1.9 × 10−5 cm2 s−1.3

RRDE tests were conducted to investigate the four-electron selectivity of the as-prepared 

samples. The electron transfer number (𝑛) and H2O2 yield were calculated by the following 

equations: 
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where 𝐼𝑑 is the disk current, 𝐼𝑟 is the ring current, and N is the current collection efficiency of the 

platinum ring (N=0.37). 

The ORR stability of the electrocatalysts in the O2-staurated 0.1 M KOH solution was examined by 
using chronoamperometry at a potential of 0.45 V (vs. RHE) in O2-staurated 0.1 M KOH. 



Figure S1. TEM images of Bi-MOFs.

Figure S2. TEM images of BiCu-MOFs.

Figure S3. TEM images of Cu-BTC.



Figure S4. FT-IR patterns of Bi-MOF and BiCu-MOF.

Figure S5. XRD patterns of Bi-MOF and BiCu-MOF.

Figure S6. TEM images of CuSACuNP/BiCN.



Figure S7. HRTEM image of CuSACuNP/BiCN.

Figure S8. TEM images of Bi/CN.

Figure S9. TEM images of Cu/CN.



Figure S10. (a) Raman spectra of CuSACuNP/BiCN, Bi/CN, and Cu/CN. (b) C1s and (c) N1s XPS 
spectra of Bi/CN.

Figure S11. EXAFS and fitting spectra in（a）k space and (b) q space of CuSACuNP/BiCN.

Figure S12. LSV curves of BiCu-catalysts with different (a) Bi/Cu feeding ratios, (b) pyrolysis 
temperatures, and (c) the quality of DCD.



Figure S13. CV curves of (a) CuSACuNP/BiCN, (b) Pt/C, (c) Bi/CN, and (d) Cu/CN in Ar- 
saturated and O2-saturated 0.1 M KOH solution.   

Figure S14. CV curves for (a) CuSACuNP/BiCN, (b)Pt/C, (c) Bi/CN, and (d) Cu/CN at various scan 
rates of 10~80 mV s-1.



Figure S15. TEM images of CuSACuNP/BiCN after a long-time stability test.

Table S1. The amount of C, N, O, Bi, and Cu in CuSACuNP/BiNC from EDS analysis.

Elements Atom ratio (at. %)
C 88.60
N 2.27
O 5.40
Bi 0.01
Cu 33.73

Table S2. The amount of Bi, Cu in Bi/CN and CuSACuNP/BiCN from ICP-OES.
Samples Elements Mass ratio (wt. %)

Bi/CN Bi 0.04

CuSACuNP/BiCN Bi 0.03

CuSACuNP/BiCN Cu 2.96

Table S3. The specific values of surface area and pore size of Bi/CN, CuSACuNP/BiCN and Cu/CN.

Samples as,BET  (m2 g-1) Mean pore diameter (nm) Total pore volume (cm3 g-1)

Bi/CN 1319.5 7.99 2.6

CuSACuNP/BiCN 626.2 8.84 1.4

Cu/CN 262.3 12.3 0.8



Table S4. Best fitting EXAFS data for CuSACuNP/BiCN.

sample Scattering pair N R(Å) σ2(10-3Å2) ΔE0(eV) R factor

Cu-N 1.9 1.88 7.38
CuSACuNP/BiCN

Cu-Cu 3.2 2.55 4.40
5.64 0.005

Table S5. Summary of the half-wave potential and limiting current density of some 
recently reported ORR catalysts

Catalyst E1/2/V vs. RHE JL/mA cm-2 Reference
CuSACuNP/BiCN 0.86 5.82 This work
Cu@Cu-N-C 0.83 5.3 4

SA-Cu/NG 0.856 5.6 5

(Cu-N-C/GC) 0.84 6.2 6

Cu/N/C 0.75 4.7 7

Cu-BTT 0.778 4.17 8

Cu SAs/NC-900 0.88 5.5 9

CuN2C2 0.863 6.1 10

FeN3S 0.86 5.8 11

Fe/OES 0.85 6.3 12

C-Se-C 0.85 5.53 13

Fe-IICSAC 0.908 5.5 14

Fe3C@NCNTs 0.84 5.8 15

Ni-SiNC 0.866 5.8 16

CoSA-C2N 0.87 7.9 17

Fe/N-PCNs 0.86 5.7 18
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