Supplementary Information

Surface plasmon assisted preparation of X1-type Y₂SiO₅:Eu³⁺-Au luminescent crystal

Lei Xi, ^{a, b} Chengyun Zhang, ^c Hairegu Tuxun, ^{a, b} Baobao Zhang, ^{a, b} Min Ji, ^{a, b} Xilin Zhou, ^{a, b} Wanqiu Liang, ^{a, b} Jinyu Li, ^{a, b} Huan Chen, ^{a, b} Jinping Li, ^{*a, b} Zhengkun Fu, ^{*a, b} Zhenglong Zhang ^{a, b} and Hairong Zheng ^{a, b}

^{a.} School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China. E-mail: Ijping@snnu.edu.cn, <u>zkfu@snnu.edu.cn</u>

- ^{b.} Xi'an Key Laboratory of Optical Information Manipulation and Augmentation, Xi'an 710062, China
- ^{c.} School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China

Fig. S1. (a) EDX elemental mapping analysis and (b) SAED pattern of the transformation product of the composite structure NaYF₄:Eu³⁺@SiO₂(5 nm)@Au, and the scale bar is 200 nm in (a), SAED pattern of the particle after transformation is taken along [011] zone axes in (b).

Fig. S2. HR-TEM images for the transformation product of the composite NaYF₄:Eu³⁺@SiO₂(15 nm)@Au in Figure 3g (upper inset), acquired along (a) [011], (b) [0-10], and (c) [112] axis, respectively. Corresponding (d-f) FFT images and (g-i) simulations of electron diffraction patterns of X1-Y₂SiO₅ according to PDF-1 No.52-1810 standard card.

Мар							
Element	At. No.	Netto	Mass [%]	Mass Norm. [%]	Atom [%]	abs. error [%] (1 sigma)	rel. error [%] (1 sigma)
Yttrium	39	16179	58.75	58.75	25.42	1.86	3.16
Oxygen	8	32788	24.30	24.30	58.42	0.77	3.15
Silicon	14	16252	10.65	10.65	14.59	0.11	1.04
Gold	79	183	0.46	0.46	0.09	0.09	18.75
Europium	63	3772	5.83	5.83	1.48	0.62	10.68
		Sum	100.00	100.00	100.00		

Fig. S3. EDX elemental mapping analysis of the elements content in Figure 3j.

Fig. S4. Partial zoom-in luminescence spectrum of ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transitions of Eu^{3+} ions in the transformation product of the composite structure NaYF₄: $Eu^{3+}@SiO_{2}(30 \text{ nm})@Au$ in Figure 3h.

Fig. S5. (a) High angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) image, EDX elemental mapping analysis (scale bar is 200 nm) and (b) SAED pattern of the transformation product of the composite structure NaYF₄:Eu³⁺@SiO₂(30 nm)@Au.

Fig. S6. (a) High angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) image, EDX elemental mapping analysis (scale bar is 200 nm) and (b) SAED pattern of the transformation product of the composite structure NaYF₄:Eu³⁺@SiO₂(90 nm)@Au.

Fig. S7. SEM images of multiple NaYF₄:Eu³⁺@SiO₂(15 nm)@Au particles and the corresponding single particle (Insets, scale bar is 200 nm) under (a) conventional annealing at 1050 °C for 1 h and (b) 532 nm CW laser irradiation.