Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Strain-engineered thermophysical properties ranging from band insulating to topological insulating phases in β-Antimonene

Sumit Kukreti^a, Surbhi Ramawat^a, Nirpendra Singh^b, Ambesh Dixit^{a*}

^aAdvanced Materials and Device (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, 342030, India

^bDepartment of Physics, Khalifa University of Science and Technology, Abu Dhabi-127788,

United Arab Emirates (UAE)

*<u>ambesh@iitj.ac.in</u>

1. Crystal Orbital Hamiltonian Population (COHP)

Fig. S1: The Crystal Orbital Hamiltonian Population comparing (-COHP) for 0% to 15 % strain. Near fermi level the relatively larger population of the antibonding states at 15% strain indicate the weaking in covalent bond leading a anharmonicity.

2. Mechanical & Structural Properties:

Table S1: Elastic stiffness Coefficients, bulk modulus (B), density (ρ), the sound velocity in transverse ($^{\nu}t$) and longitudinal direction ($^{\nu}l$) for the pristine and strained β -Sb system.

~ ·		~	~	-		- •		
Strain	$ C_{11} $	$ C_{12} $	C ₆₆	B	ρ	Poisson	v_t	ν_l
	(N m ⁻¹)	(kg m ⁻²)	ratio	(km s ⁻¹)	(km s ⁻¹)			
0%	32.746	6.395	13.176	19.571	2.75×10^{-10}	0.195	2.18	3.45
					6			
5%	23.761	5.619	9.071	14.690	2.54×10^{-10}	0.236	1.90	3.09
					6			
10%	17.018	4.234	6.392	10.626	2.27×10^{-10}	0.248	1.68	2.74
					6			
15%	6.259	1.099	2.580	3.679	2.08×10^{-10}	0.176	1.13	1.73
					6			

The average sound velocity in the crystal is given by;

$$v_{s} = \left[\frac{1}{3}\left(\frac{1}{v_{l}^{3}} + \frac{2}{v_{t}^{3}}\right)\right]^{-\frac{1}{3}} \#(1)$$

Where v_l and v_s are the longitudinal and transverse sound velocity and given as follows;

$$v_{l} = \left(\frac{B+G}{\rho_{2D}}\right)^{\frac{1}{2}} \#(2)$$

$$v_{t} = \left(\frac{G}{\rho_{2D}}\right)^{\frac{1}{2}} \#(3)$$

Fig. S2: The isotropic Young's Modulus (Y) and Shear Modulus (G) for the range of strain 0% to15 %. A reduction in its value indicates the reduction in bond strength with increasing biaxial strain.

3. Biaxial strain effect on Bandgap:

Fig. S3: Biaxial strain effect on the bandgap value (HSE06) for the range of strain 0% to 15 % in β -Sb monolayer. The dotted vertical line shows indirect to direct bandgap transition at ~ 3% strain (b-f) Calculated HSE06, the electronic band structure of β -Sb including SOC for different strain (b) 1% strain (c) 2% strain (d) 3% strain (e) 5% strain (f) 10% strain.

4. Z2 Invariant in topological insulator:

In two-dimensions, to distinguish the quantum spin Hall phase from the band insulator, the Z_2 invariant is defined. Following Fu et al. approach, Z_2 invariant can also be determined in the presence of inversion symmetry, through parity of the occupied band eigenstates at the four time-reversal invariant momenta (TRIM) Γ_i points. This can be given by the quantities.

$$\delta_i = \prod_{m=1}^N \xi_{2m}(\Gamma_i) \#(4)$$

Where, $\xi_{2m}(\Gamma_i) = \pm 1$ is the parity eigenvalue of the 2mth occupied energy band at Γ_i . The Z₂ invariant = 0,1 which determine the quantum spin-Hall phase, and is given as the product of $\delta_{i's}$.

$$(-1)^{\nu} = \prod_i \delta_i \#(5)$$

Fig. S4: (a) HSE06 based (without considering spin-orbit coupling) orbital projected band structure of β -Sb monolayer at 15% strain when no spin-orbit coupling is considered. The red colour denotes the complete p-orbital contribution. The dotted line indicates the fermi level. (b) Surface DOS for the 15% case within -1.5 eV to 2 eV energy range. The bright yellow region near fermi level signifies the two branches of overlapped edge states.

5. Weighted Phase space of phonon-phonon scattering:

Fig. S5: Weighted phase space vs frequency (rad/ps) curve for 0% and 15% tensile strain.

6. Mild Strain Raman Spectra

Fig. S6: Calculated Raman spectra as a function of frequency (cm⁻¹), under mild tensile strain ranging 0%, 1% and 3%. Orange and blue peaks represent the A_{1g} and E_{g} modes, respectively.