Supplementary information

TiO₂-Modified MoS₂ Monolayer Films Enables Sensitive NH₃ Sensing at Room Temperature

Lun Tan,^{1,2#}, Xianzhen Liu^{1#}, Peng Wu², Liwei Cao², Wei Li², Ang Li^{2,*}, Zhao Wang^{1,*}, Haoshuang Gu^{1,*}

¹Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, P.R. China.

²Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P.R. China

*Corresponding authors, E-mail: <u>wangzhao@hubu.edu.cn;</u> ang.li@bjut.edu.cn; guhsh@hubu.edu.cn

[#] Both authors contribute equally to this work.

Fig.S1 The growth of monolayer MoS_2 films. (a) Schematic of the CVD apparatus. (b) Temperature profile and Ar flow during the growth process. (d-f) The SEM images of MoS2 grown at 650°C, 700°C, 750°C and 800°C, respectively. The morphology of MoS₂ at different growth temperature in 10 min is shown in **Fig S1**. When the temperature is below 700°C, many separate irregular polygonal-like crystals can be seen in **Fig S1(c)**. The Raman spectrum of those small crystals is corresponding to the MoO₂ and MoOS₂ which are the intermediate product during the growth of MoS₂ because of incomplete sulfurization at low temperature as shown in Fig S2. When the temperature reaches to 700°C, there are many separate MoS₂ crystals on substrate. The Raman spectrum of those small crystals in Fig S2(a) shows the E_{2g} and A_{1g} peaks of MoS₂, the frequency difference (Δk) between the E_{2g}^{I} and A_{1g} peaks is ~ 20 cm⁻ ¹, which is corresponding to the monolayer MoS_2 . The MoS_2 crystals gradually connects into continuous polycrystalline films, when temperature rises to 750°C due to the accelerated reaction rate at high

temperature. At 800°C, Δk of films is ~ 24 cm⁻¹ in Fig S2, which indicated that the films are multilayer MoS₂ films. The rapid evaporation of MoO₃ makes the pressure of MoO₃ higher on the surface of substrates, which results in the growth of multilayer MoS₂ as reported in ref.1.^[1]

Fig.S2 The Raman spectrum of production grown at 650°C, 750°C and 800°C, respectively.

Fig.S3 SEM images of MoS_2 films at different growth time. When the growth time is shorter than 5 min, there are separated triangle-like MoS_2 nanoflakes on substrate. When the growth time is extended to 10 min, the separated MoS_2 nanoflakes connected into polycrystalline films. The new nuclei will form on the surface of MoS_2 films with the further increase of growth time, which lead to the increase of the thickness of MoS_2 films. Once the growth time exceeds 20 min, there are some pores on the MoS_2 films because of the poor thermal-stability of MoS_2 films in S insufficient environment.

Fig. S4 Fabrication and photography of TiO₂ modifying MoS₂ monolayer films sensors. (a) the device was annealed at 250°C in Ar for contacting tightly. (b) Photograph of a monolayer MoS₂ films with interdigitated electrodes.

Fig. S5 AFM images of 10 nmol/cm² TiO₂ modifying monolayer. (a) and (b) represent the 2D and 3D AFM images of sensors. (c) particle size distribution of TiO₂ nanoparticles. The TiO₂ nanoparticles are uniformly distributed on the surface of monolayer MoS₂ films except for several big cluster (>100 nm). The average size of about those nanoparticles is about 55 nm.

Fig. S6 HADDF images and EDS elements mappings of hybrid. It is clearly that the MoS_2 is wide distributed. the sample was obtained by scraping from the substrate, which led to the cluster and wrinkle of MoS_2 films. Therefore, there are few large area uniform flat MoS_2 films on carbon films. The size of TiO₂ nanoparticle is about 50 nm, which is consistent with the result obtained by AFM. **Fig S6 (e)** is the selected area electron diffraction (SAED) pattern of the **Fig 2(a)**.

Fig. S7 The XPS spectrum of TiO_2 nanoparticles modifying monolayered MoS_2 films.

Fig. S8 Comparison of sensor response and response time of different sensors towards 500 ppm of ammonia in air. The response time varied from 5 min to 12 min with the increase amount of TiO_2 nanoparticles. -

Table. S1 Linear fit of each sensor towards 50-1000 ppm. the R^2 is greater than 0.94, indicating that the response of each sensor has a good linear relationship with the concentration of NH₃ from 50-1000 ppm.

Sample	R ²	slope	
S0	0.94	0.0020	
S1	0.95	0.0101	
S2	0.96	0.0111	
S 3	0.98	0.0150	
S4	0.96	0.0082	

Fig. S9 The dynamic response of 30 nmol/cm² TiO_2 nanoparticles modifying monolayer MoS_2 films towards 50 ppm NH_3 at different humidity.

Fig. S10 DFT calculation details. (a)Top view of a monolayer MoS₂ showing hole top, S top and Mo top for N(NH₃) adsorption. (b) and (c) are isosurface plot of the electron charge density difference for NH₃ on monolayer MoS₂ and TiO₂-MoS₂ respectively. To study the adsorption of NH₃ on the MoS₂, $3 \times 3 \times 1$ supercell of 2H-MoS₂ was built as shown in **Fig S10(a)**. A large vacuum layer of 15 Å was used to avoid interlayer interactions. A plane wave cutoff of 450 eV was consistently used during the whole process. In the process of geometry optimization, the convergency of energy and atomic force were 10^{-5} eV and 0.03 eV/Å, respectively. A Monkhorst-Park mesh of $3 \times 3 \times 1$ for the Brillouin zone integration was employed. The adsorption energy of NH₃ molecules on MoS₂ was calculated using $E_{ads} = E_{total} - (E_{MoS2 or TiO2-MoS2} + E_{NH3})$, where

 E_{total} is the total energy of the NH₃ molecules on MoS₂ (or TiO₂-MoS₂) surface system, E_{MoS2} ($E_{TiO2-MoS2}$) is the energy of monolayered MoS₂ (TiO₂-MoS₂), E_{NH3} is the energy of isolated NH₃ molecule.

To explore the underlying mechanism of the significant resistance changes upon the adsorption of NH₃ molecules on MoS₂, DFT calculation was carried to analysis the NH_3 adsorption on MoS_2 as shown in Fig. S10. There are seven absorption sites are listed in Fig S10(a) which are depended on the sites of N and orientation of N-H bond. Table S2 shows the absorption energy of NH₃ molecules on each site. It is clearly that the absorption energy of H atoms near S (M1 and H1) are lower than far one (S1 and S2), which indicate that the absorption site of H in NH₃ molecule atom close S atom is more stable. this is consistent with the charge density difference of absorption system in Fig. S10(b) because the obvious charge transfer between H and S atoms. The blue area and red area represent electrons depletion and accumulation, respectively. It is clearly shown that the electrons were transferred from NH₃ to MoS₂, which resulted in the decrease of the resistance when MoS₂ exposed to NH₃ and this is consistent with the experimental results of bare MoS₂ films towards NH₃. Obviously, the N atom on the Mo top and the H atom orienting to S atom has small absorption energy, which is consistent with the result of the easily charge transferring between S and H atoms in Fig S10 (a). Isosurface plot of the electron charge density difference for NH₃ on TiO₂-MoS₂ is shown in the

Fig. S10(c). It shows that the NH₃ molecule interact with O atoms of TiO₂, which may cause the decrease of sensor resistance. The table S2 shows the absorption energy of NH₃ molecule absorbed on the surface of MoS₂ and TiO₂-MoS₂, respectively. The adsorption energy is smaller when ammonia molecule adsorbed on the TiO₂-MoS₂ surface, indicating that ammonia molecule is more easily adsorbed on the TiO₂ surface than on MoS₂ surface since TiO₂ has more active sites.

Table. S2 The adsorption energy of NH_3 molecule on different site of MoS_2 and TiO_2 -MoS₂.

Absorption	H1	H2	Н3	S1	S2	M1	M2	TiO ₂ -
sites			_					MoS ₂
E _{abs} (eV)	-0.170	-0.166	-0.167	-0.110	-0.107	-0.172	-0.166	-0.69

Fig. S11. The LDOS (local density of states) of before and after NH₃ absorption on MoS₂ (a) and TiO₂ (b). The absorption of NH₃ molecules result in several distinct states at the valence bands, which is close to that of pristine MoS₂ without NH₃ absorption. Therefore, the NH₃ absorption don't have a substantial effect on the electronic structures of MoS₂. Before the adsorption of the NH₃ molecules, the band gap of the TiO₂ is \sim 2 eV according to the calculation results, as shown in the **Fig S11**. After the NH₃ absorption, new electron states can be found in the band gap of TiO₂ according to the calculation results, which can be attributed to that NH₃ molecule interact with O atoms and finally lead to the narrowing of band gap to 0.7 eV. According to the first principle calculation results, the surface adsorption of NH₃ on TiO₂ will have a strong impact on the electron structure of the TiO₂, which may lead to the variation of the electrical transportation behavior of the TiO₂ host materials.

Reference

 J. Wei, J.-K. Huang, J. Du. Effect of the geometry of precursor crucibles on the growth of MoS2 flakes by chemical vapor deposition. *New Journal of Chemistry*. 2020, 44, 21076-21084.