Supplementary information

TiO2-Modified MoS² Monolayer Films Enables Sensitive NH³ Sensing at Room Temperature

Lun Tan,^{1,2#}, Xianzhen Liu^{1#}, Peng Wu², Liwei Cao², Wei Li², Ang Li^{2,*}, *Zhao Wang1,* , Haoshuang Gu1, **

¹Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, P.R. China.

2 Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P.R. China

*Corresponding authors, E-mail: wangzhao@hubu.edu.cn; [ang.li@bjut.edu.cn;](mailto:ang.li@bjut.edu.cn) guhsh@hubu.edu.cn

Both authors contribute equally to this work.

Fig.S1 The growth of monolayer $MoS₂$ films. (a) Schematic of the CVD apparatus. (b) Temperature profile and Ar flow during the growth process. (d-f) The SEM images of MoS2 grown at 650℃, 700 \degree C, 750 \degree C and 800 \degree C, respectively. The morphology of MoS₂ at different growth temperature in 10 min is shown in **Fig S1.** When the temperature is below 700°C, many separate irregular polygonal-like crystals can be seen in **Fig S1(c)**. The Raman spectrum of those small crystals is corresponding to the $MoO₂$ and $MoOS₂$ which are the intermediate product during the growth of $MoS₂$ because of incomplete sulfurization at low temperature as shown in Fig S2. When the temperature reaches to 700°C , there are many separate $MoS₂$ crystals on substrate. The Raman spectrum of those small crystals in **Fig S2(a)** shows the E_{2g} and A_{1g} peaks of MoS₂, the frequency difference (Δk) between the E^{I}_{2g} and A_{Ig} peaks is ~ 20 cm⁻ ¹, which is corresponding to the monolayer $MoS₂$. The $MoS₂$ crystals gradually connects into continuous polycrystalline films, when temperature rises to 750° C due to the accelerated reaction rate at high

temperature. At 800°C, Δk of films is ~ 24 cm⁻¹ in Fig S2, which indicated that the films are multilayer $MoS₂$ films. The rapid evaporation of $MoO₃$ makes the pressure of $MoO₃$ higher on the surface of substrates, which results in the growth of multilayer $MoS₂$ as reported in ref.1.[1]

Fig.S2 The Raman spectrum of production grown at 650℃, 750℃ and 800°C, respectively.

Fig.S3 SEM images of MoS₂ films at different growth time. When the growth time is shorter than 5 min, there are separated triangle-like $MoS₂$ nanoflakes on substrate. When the growth time is extended to 10 min, the separated $MoS₂$ nanoflakes connected into polycrystalline films. The new nuclei will form on the surface of $MoS₂$ films with the further increase of growth time, which lead to the increase of the thickness of $MoS₂$ films. Once the growth time exceeds 20 min, there are some pores on the $MoS₂$ films because of the poor thermal-stability of $MoS₂$ films in S insufficient environment.

Fig. S4 Fabrication and photography of $TiO₂$ modifying $MoS₂$ monolayer films sensors. (a) the device was annealed at 250℃ in Ar for contacting tightly. (b) Photograph of a monolayer $MoS₂$ films with interdigitated electrodes.

Fig. S5 AFM images of 10 nmol/cm² TiO₂ modifying monolayer. (a) and (b) represent the 2D and 3D AFM images of sensors. (c) particle size distribution of $TiO₂$ nanoparticles. The $TiO₂$ nanoparticles are uniformly distributed on the surface of monolayer $MoS₂$ films except for several big cluster (>100 nm). The average size of about those nanoparticles is about 55 nm.

Fig. S6 HADDF images and EDS elements mappings of hybrid. It is clearly that the $MoS₂$ is wide distributed. the sample was obtained by scraping from the substrate, which led to the cluster and wrinkle of $MoS₂$ films. Therefore, there are few large area uniform flat $MoS₂$ films on carbon films. The size of $TiO₂$ nanoparticle is about 50 nm, which is consistent with the result obtained by AFM. **Fig S6 (e)** is the selected area electron diffraction (SAED) pattern of the **Fig 2(a)**.

Fig. S7 The XPS spectrum of TiO₂ nanoparticles modifying monolayered $MoS₂$ films.

Fig. S8 Comparison of sensor response and response time of different sensors towards 500 ppm of ammonia in air. The response time varied from 5 min to 12 min with the increase amount of $TiO₂$ nanoparticles. -

Table. S1 Linear fit of each sensor towards $50-1000$ ppm. the R^2 is greater than 0.94, indicating that the response of each sensor has a good linear relationship with the concentration of $NH₃$ from 50-1000 ppm.

Sample	R^2	slope	
$\bf S0$	0.94	0.0020	
S ₁	0.95	0.0101	
S ₂	0.96	0.0111	
S3	0.98	0.0150	
S ₄	0.96	0.0082	

Fig. S9 The dynamic response of 30 nmol/cm² TiO₂ nanoparticles modifying monolayer $MoS₂$ films towards 50 ppm $NH₃$ at different humidity.

Fig. S10 DFT calculation details. (a)Top view of a monolayer $MoS₂$ showing hole top, S top and Mo top for $N(NH_3)$ adsorption. (b) and (c) are isosurface plot of the electron charge density difference for NH_3 on monolayer $MoS₂$ and $TiO₂-MoS₂$ respectively. To study the adsorption of NH₃ on the MoS₂, $3 \times 3 \times 1$ supercell of 2H-MoS₂ was built as shown in **Fig S10(a)**. A large vacuum layer of 15 Å was used to avoid interlayer interactions. A plane wave cutoff of 450 eV was consistently used during the whole process. In the process of geometry optimization, the convergency of energy and atomic force were 10^{-5} eV and 0.03 eV/Å, respectively. A Monkhorst-Park mesh of $3 \times 3 \times 1$ for the Brillouin zone integration was employed. The adsorption energy of $NH₃$ molecules on $MoS₂$ was calculated using $E_{ads} = E_{total} - (E_{MoS2} or TiO2-MoS2} + E_{NH3})$, where

 E_{total} is the total energy of the NH₃ molecules on MoS₂ (or TiO₂-MoS₂) surface system, E_{MoS2} ($E_{TiO2-MoS2}$) is the energy of monolayered $MoS2$ $(TiO₂-MoS₂), E_{NH3}$ is the energy of isolated NH₃ molecule.

To explore the underlying mechanism of the significant resistance changes upon the adsorption of NH_3 molecules on MoS_2 , DFT calculation was carried to analysis the NH_3 adsorption on MoS_2 as shown in **Fig. S10**. There are seven absorption sites are listed in **Fig S10(a)** which are depended on the sites of N and orientation of N-H bond. Table S2 shows the absorption energy of NH_3 molecules on each site. It is clearly that the absorption energy of H atoms near S (M1 and H1) are lower than far one $(S1$ and S2), which indicate that the absorption site of H in NH₃ molecule atom close S atom is more stable. this is consistent with the charge density difference of absorption system in **Fig. S10(b)** because the obvious charge transfer between H and S atoms. The blue area and red area represent electrons depletion and accumulation, respectively. It is clearly shown that the electrons were transferred from $NH₃$ to $MoS₂$, which resulted in the decrease of the resistance when $MoS₂$ exposed to $NH₃$ and this is consistent with the experimental results of bare $MoS₂$ films towards $NH₃$. Obviously, the N atom on the Mo top and the H atom orienting to S atom has small absorption energy, which is consistent with the result of the easily charge transferring between S and H atoms in **Fig S10 (a)**. Isosurface plot of the electron charge density difference for NH_3 on TiO_2 -MoS₂ is shown in the

Fig. S10(c). It shows that the NH_3 molecule interact with O atoms of TiO_2 , which may cause the decrease of sensor resistance. The table S2 shows the absorption energy of NH_3 molecule absorbed on the surface of MoS_2 and $TiO₂-MoS₂$, respectively. The adsorption energy is smaller when ammonia molecule adsorbed on the $TiO₂$ -MoS₂ surface, indicating that ammonia molecule is more easily adsorbed on the $TiO₂$ surface than on $MoS₂$ surface since $TiO₂$ has more active sites.

Table. S2 The adsorption energy of NH₃ molecule on different site of $MoS₂$ and TiO₂-MoS₂.

Absorption	H1			$H2$ $H3$ $S1$ $S2$	M1	M ₂	$TiO2$ -
sites							MoS ₂
E_{abs} (eV) -0.170 -0.166 -0.167 -0.110 -0.107 -0.172 -0.166 -0.69							

Fig. S11. The LDOS (local density of states) of before and after NH₃ absorption on $MoS₂$ (a) and TiO₂ (b). The absorption of $NH₃$ molecules result in several distinct states at the valence bands, which is close to that of pristine $MoS₂$ without $NH₃$ absorption. Therefore, the NH₃ absorption don't have a substantial effect on the electronic structures of $MoS₂$. Before the adsorption of the NH₃ molecules, the band gap of the TiO₂ is ~ 2 eV according to the calculation results, as shown in the **Fig S11**. After the $NH₃$ absorption, new electron states can be found in the band gap of $TiO₂$ according to the calculation results, which can be attributed to that $NH₃$ molecule interact with O atoms and finally lead to the narrowing of band gap to 0.7 eV. According to the first principle calculation results, the surface adsorption of NH_3 on TiO₂ will have a strong impact on the electron structure of the $TiO₂$, which may lead to the variation of the electrical transportation behavior of the $TiO₂$ host materials.

Reference

[1] J. Wei, J.-K. Huang, J. Du. Effect of the geometry of precursor crucibles on the growth of MoS2 flakes by chemical vapor deposition. *New Journal of Chemistry*. 2020, **44**, 21076-21084.