Supporting Information

High-performance Si@C anode for lithium-ion batteries enabled by a novel structuring

strategy

Jian Song^a, Shengfeng Ke^a, Pengkai Sun^a, Dian Yang^a, Chengang Luo^a, Qinghua Tian^a*,

Liang Cui^a and Jizhang Chen^b

^aKey Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province,

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University,

Hangzhou, 310018, P. R. China

^bCollege of Materials Science and Engineering, Nanjing Forestry University,

Nanjing, 210037, P. R. China

*Corresponding author e-mail addresses: 09tqinghua@163.com

Fig. S1 TEM image of Si@FeNO.

Fig. S2 TEM image of PVP-derived carbon in Si@P.

Fig. S3 TEM image of FeNO@P.

Fig. S4 HRTEM image of FeNO@P.

Fig. S5 TEM image of Si@FeNO@P.

Fig. S6 SEM images of Si@FeNO@P with (a) 50K and (b) 100K magnifications. (c) Pore size

Fig. S7 HRTEM image of the pure Si nanoparticles.

Fig. S8 TEM image of Si@FeNO@P-Et.

Fig. S9 HRTEM image of carbon of Si@FeNO@P-Et.

Fig. S10 Fe 2p HRXPS spectra of Si@FeNO@P and Si@FeNO@P-Et.

Fig. S11 N 1s HRXPS spectra and N elemental mapping (based on Fig. 2j) of Si@FeNO@P.

Fig. S12 TG curves of different samples at 10 °C/min from room temperature to 800 °C.

Fig. S13 Mass ratios of Fe to Si of different samples obtained ICP characterization.

Fig. S14 CVs of FeNO@P at 0.3 mV s^{-1} between 0.01 and 1.5 V.

Fig. S15 Galvanostatic charge/discharge profiles of FeNO@P at 100 mA g^{-1} .

Fig. S16 Galvanostatic charge/discharge profiles of Si@FeNO at 100 mA g⁻¹.

Fig. S17 Magnified fragment of dQ/dV plots of the Si@FeNO@P.

Fig. S18 EIS plots of the Si electrode at different temperatures.

Fig. S19 Cycling performance of samples prepared with different dosage of $Fe(NO_3)_3$ at 0.1A g⁻¹.

Fig. S20 TEM images of samples prepared with (a) 0.3 g and (b) 0.7 g of $Fe(NO_3)_3$.

Fig. S21 XRD patterns of samples prepared with different dosage of $Fe(NO_3)_3$.

Fig. S22 Cycling performance of samples prepared with different dosage of Si at 100 mA g⁻¹.

Fig. S23 TEM images of samples prepared with (a) 0.1 g and (b) 0.3 g of Si.

Fig. S24 XRD patterns of samples prepared with different dosage of Si.

Fig. S25 Cycling performance of samples prepared with different carbonization temperatures at

100 mA g⁻¹.

Fig. S26 TEM images of samples prepared at (a) 600 \mathcal{C} *and (b) 800* \mathcal{C} *.*

Fig. S27 (a) XRD patterns and (b) Raman spectra of samples prepared with different

carbonization temperatures.

Fig. S28 An equivalent circuit.

In the equivalent circuit diagram the R_{Ω} , R_f , R_{ct} , CPE, and Z_w represent the ohmic resistance, ionic resistance at the SEI layer, charge transfer resistance, constant phase-angle element, and Warburg impedance, respectively [26].

Fig. S29 XRD patterns of the Si@FeNO@P electrode under different electrochemical states

during the first cycle at 100 mA g^{-1} .

Fig. S30 High-resolution XPS spectrum of the Fe 2p of the Si@FeNO@P after 50 cycles at 100

```
mA g^{-l}.
```

For assembling full battery, the commercial LFP electrode was employed as the cathode and the as-prepared Si@FeNO@P electrode as the anode. The Si@FeNO@P anodes were activated for two cycles with lithium metal counter electrode at 100 mA g⁻¹ between 0.01 and 1.5 V before assembling the full battery. The galvanostatic charge/discharge test of the as-assembled full battery was achieved at 0.1 C between 1 and 4.2 V based on a LAND CT2001a cell test system.

Si/C-based	Potential	Current density	Crueles	Capacity	Reference
anode materials	cutoff (V)	(mAg^{-1})	Cycles	(mAhg ⁻¹)	
Si@FeNO@P	1.5-0.01	100	250	1116.1	This work
Si@FeNO@P	1.5-0.01	1000	500	858.1	This work
Si@FeNO@P	1.5-0.01	5000	500	503.1	This work
CNT/Fe@Si@SiO ₂	1.0-0.01	1000	500	968	[1]
C/ Si@SnO ₂	3.0-0.01	100	200	919.21	[2]
N-doped TiO ₂ /Si/C	3.0-0.001	100	80	538	[3]
Si@Co-NC	2.0-0.005	100	80	775.5	[4]
Si@Co-C	3.0-0.01	1000	500	650	[5]
Si@C/TiO2@C/HC	3.0-0.01	1000	400	558	[6]
Si@Fe ₂ O ₃ /C	2.0-0.01	1000	300	680.7	[7]
Si@Ni-NP/CNTs	1.5-0.01	100	100	1008	[8]
Si@TiO ₂ @rGO	3.0-0.01	200	100	1135.1	[9]
Si@TiO2-B/CNTs	2.5-0.01	200	100	1184	[10]
Si@void C@TiO ₂	2.5-0.01	100	500	668	[11]
Si@WO ₃ @C	3.0-0.01	1000	100	610	[12]
Si/Ge/G@C	3-0.01	100	100	706	[13]
Si-Mn/C	2-0.01	1000	100	960	[14]
Si/Mxene@Zn-C	3-0.01	100	150	862.9	[15]
SiO _x -TiO ₂ /Si/CNTs	2.5-0.005	100	100	800	[16]
Si/Sb/Sb ₂ O ₃ /G@C	3-0.01	1000	180	567.8	[17]
Si/Sn@SiO _x -C	1.5-0.01	500	100	1102	[18]
Si/TiSi ₂ /G@C	1.5-0.01	800	120	943.8	[19]
ZnO/Si/PC	3-0.01	1000	300	500	[20]
T ₁₂ -Si/C	3-0.01	200	100	1449.2	[21]
Si@LT-4-5	3-0.01	500	150	888	[22]
Graphene/IOC@Si	1.5-0.005	1000	450	484	[23]
Si-M1	1.2-0.1	1000	100	2522.6	[24]
Si@CEG/C	1.5-0.01	1000	200	963.8	[25]

Table S1. The lithium storage comparison of the Si@FeNO@P with other Si/C-based composites

References

- M. Zhang, L. Li, X. Jian, et al. Free-standing and flexible CNT/(Fe@Si@SiO₂) composite anodes with kernel-pulp-skin nanostructure for high-performance lithium-ion batteries [J]. J. Alloys Compd., 2021, 878: 160396.
- [2] S. Liu, W. Tao, Y. Yu, et al. Ball milling synthesis of robust sandwich-structured C/Si@SnO₂ anode with porous silicon buffer layer for fast charging lithium-ion battery [J].

Colloids Surf., A, 2022, 654: 130088.

- [3] S. Xie, Q. Ji, Y. Xia, et al. Mutual performance enhancement within dual n doped TiO₂/Si/C nanohybrid lithium - ion battery anode [J]. ChemistrySelect, 2021, 6(2): 141-53.
- [4] Q. Li, Y. Wang, J. Yu, et al. High-performance Si-containing anode materials in lithium-ion batteries: a superstructure of Si@Co–NC composite works effectively [J]. Green Energy Environ., 2022, 7(1): 116-29.
- [5] J. Yan, C. Gao, S. Qi, et al. Encapsulation of nano-Si into MOF glass to enhance lithium-ion battery anode performances [J]. Nano Energy, 2022, 103: 107779.
- [6] Y. Li, G. Chen, J. Lin, et al. Si@C/TiO₂@C/hollow-C nanocomposite as a lithium-Ion battery anode produced by refining silicon and Ti–6Al–4V residuals [J]. ACS Appl. Energy Mater., 2021, 4(12): 14526-36.
- [7] Q. Wang, C. Guo, J. He, et al. Fe₂O₃/C-modified Si nanoparticles as anode material for highperformance lithium-ion batteries [J]. J. Alloys Compd., 2019, 795: 284-90.
- [8] Y.-Q. Wang, X.-X. Yang, M.-X. Ren, et al. 3D CNTs networks enable core-shell structured Si@Ni nanoparticle anodes with enhanced reversible capacity and cyclic performance for lithium ion batteries [J]. Int. J. Hydrogen Energy, 2021, 46(29): 16179-87.
- [9] R. Fang, C. Miao, H. Mou, et al. Facile synthesis of Si@TiO₂@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries [J]. J. Alloys Compd., 2020, 818: 152884.
- [10] N. Zhou, Y. Wu, Y. Li, et al. Interconnected structure Si@TiO₂-B/CNTs composite anode applied for high-energy lithium-ion batteries [J]. Appl. Surf. Sci., 2020, 500: 144026.
- [11] L. Hou, R. Cui, S. Xiong, et al. A multilayered sturdy shell protects silicon nanoparticle

Si@void C@TiO₂ as an advanced lithium ion battery anode [J]. Phys. Chem. Chem. Phys., 2021, 23(6): 3934-41.

- [12] Y. Liu, R. Guo, H. Zhu, et al. A novel propeller-like Si@WO₃@C with boosted electrochemical properties as anode material for lithium-ion batteries [J]. Vacuum, 2021, 184: 109922.
- [13] Z. Li, K. Zhang, M. Ma, et al. Facile fabrication of Si/Ge/G@C composite electrodes for high performance lithium-ion batteries [J]. Silicon, 2022.
- [14] S. Wang, T. Wang, Y. Zhong, et al. Structure and electrochemical properties of Si-Mn/C core-shell composites for lithium-ion batteries [J]. Jom, 2020, 72(8): 3037-45.
- [15] Zhang P, Chen J, Feng L, et al. Dual confinement of Si nanoparticles in a Mxene/ZIF-8derived carbon framework for lithium-ion batteries[J]. ACS Appl. Nano Mater., 2022, 5(9): 12720-12728.
- [16] J. Jiang, Y. Ou, Y. Jiang, et al. Preparation of SiO_x-TiO₂/Si/CNTs composite microspheres as novel anodes for lithium-ion battery with good cycle stability [J]. J. Mater. Sci.: Mater. Electron., 2022, 33(14): 11025-37.
- [17] F. Sun, H. Feng, S. Gao, et al. Facile fabrication of Si/Sb/Sb₂O₃/G@C composite electrodes for high-performance li-ion batteries [J]. New J. Chem., 2020, 44(10): 4122-8.
- [18] R. Miao, J. Zhu, S. Kang, et al. In-situ mechanochemical synthesis of sub-micro Si/Sn@SiO_x-C composite as high-rate anode material for lithium-ion batteries [J]. Electrochim. Acta, 2021, 384: 138413.
- [19] Y. Zhang, M. Chen, Z. Chen, et al. A novel Si/TiSi₂/G@C composite as anode material with excellent lithium storage performances [J]. Mater. Lett., 2021, 299: 130078.

- [20] X. Sun, J. Gao, C. Wang, et al. A hybrid ZnO/Si/porous-carbon anode for high performance lithium ion battery [J]. Chem. Eng. J., 2020, 383: 123198.
- [21] X. Lin, A. Li, D. Li, et al. Facile fabrication of high-performance Si/C anode materials via AlCl₃-assisted magnesiothermic reduction of phenyl-rich polyhedral silsesquioxanes [J]. ACS Appl. Mater. Interfaces, 2020, 12: 15202–15210.
- [22] M. Liu, H. Gao, G. Hu, et al. Facile preparation of core-shell Si@Li 4 Ti 5 O 12 nanocomposite as large-capacity lithium-ion battery anode [J]. J. Energy Chem., 2020, 40: 89–98.
- [23] Y. Lu, Z. Ye, Y. Zhao, et al. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials [J]. Carbon, 2023, 201: 962–971.
- [24] J. Tang, F. Wu, X. Dai, Robust MXene adding enables the stable interface of silicon anodes for high-performance Li-ion batteries [J]. Chem. Eng. J., 2023, 452: 139139.
- [25] X. Liu, H. T. Liu, Y. H. Cao, et al. Silicon nanoparticles embedded in chemical-expanded graphite through electrostatic attraction for high-performance lithium-Ion batteries, ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.2c21866
- [26] X. L. Li, J. F. Zhu, Y. Fang, et al. Hydrothermal preparation of CoO/T_{i3C2} composite material for lithium-ion batteries with enhanced electrochemical performance [J]. J. Electroanal. Chem., 2018, 817: 1-8.

Samples	C content (%)	Si content (%)	Initial discharge capacity (mAh g ⁻¹)	ICE (%)	Reversible capacity (mAh g ⁻¹)	Cycle retention (%)	Rate performance (mAh g ⁻¹ @A g ⁻¹ at 10 th cycle)
Si	0	~100	3837.7	80.8	460.9 (120 cycles)	12.0	$\begin{array}{r} \underline{1546.7@0.1}\\ \underline{1044.4@0.3}\\ \underline{843.3@0.5}\\ \underline{633.5@1}\\ \underline{442.5@2}\\ \underline{335.6@3}\\ \underline{834@0.1}\end{array}$
Si@P	~48.8	~51.2	1855.9	61.9	680.3 (180 cycles)	36.7	$ \begin{array}{r} 1024.\overline{4@0.1} \\ \underline{856.9@0.3} \\ \underline{753.7@0.5} \\ \underline{655.3@1} \\ \underline{557.1@2} \\ \underline{504.8@3} \\ \underline{795.1@0.1} \end{array} $
Si@FeNO	0	~67.0	2031.8	61.3	974.5 (159 cycles)	48.0	$\begin{array}{r} \underline{1287.7@0.1}\\ \underline{1127.4@0.3}\\ \underline{1021.8@0.5}\\ \underline{868.7@1}\\ \underline{703.9@2}\\ \underline{587.9@3}\\ \underline{1106.4@0.1} \end{array}$
Si@FeNO@P	~26.2	~44.6	2123.2	68.3	1116.1 (250 cycles)	52.6	$\begin{array}{r} \underline{1428.2@0.1}\\ \underline{1305.6@0.3}\\ \underline{1260.5@0.5}\\ \underline{1149.8@1}\\ \underline{1055.7@2}\\ \underline{973.5@3}\\ \underline{1260.8@0.1} \end{array}$
Si@FeNO@P-Et	~37.2	~62.8	2206.1	69.5	839.5 (175 cycles)	38.1	$\begin{array}{r} \underline{1401.1@0.1}\\ \underline{1226.2@0.3}\\ \underline{1121.7@0.5}\\ \underline{1011.6@1}\\ \underline{881.3@2}\\ \underline{771.6@3}\\ \underline{1090.3@0.1} \end{array}$
FeNO@P	~48.8	0	769.1	28.5	180.3 (250 cycles)	3.7	$\begin{array}{r} \underline{217.9@0.1}\\ \underline{183.6@0.3}\\ \underline{167.1@0.5}\\ \underline{144.2@1}\\ \underline{121@2}\\ \underline{104.1@3}\\ \underline{206.2@0.1} \end{array}$

Table S2 Comparison of lithium storage performance of the as-prepared samples at 100 mA g^{-1}