Electronic Supporting Information

Electrostatically Driven Unidirectional Molecular Flux for High Performance Alkaline Flow Batteries

Bhojkumar Nayak, Ritwik Mondal, and Musthafa Ottakam Thotiyl*

Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. E-mail: <u>musthafa@iiserpune.ac.in</u>

Table of Contents

Fig. S1 Cyclic voltammogram with different concentrations of PDDA in CNT (+)	3
Fig. S2 ATR-FTIR and TGA spectra	4
Fig. S3 XRD spectra and SEM images	5
Fig. S4 Scan rate-dependent studies	6
Calculation S1	7
Fig. S5 RDE studies	9
Fig. S6 BET surface area measurements	10
Fig. S7 I-V measurements for electrical conductivity	10
Fig. S8 Contact angle measurements	10
Equation S1-S3	11
Fig. S9 Rate capability plot	12
Fig. S10 Charge-discharge cycling	12
Calculation S2	13
Fig. S11 TEM images of CNT (+) after charge-discharge	14
Fig. S12 SEM images of CNT (+) after charge-discharge	14
Fig. S13 ATR-FTIR of CNT (+) after charge-discharge	15
Fig. S14 EDX elemental mapping	16

Fig. S1 Cyclic voltammogram of 2,6-DHAQ molecule on the CNT (+) electrode with varying concentrations of PDDA in the modifying solution.

Fig. S2 (a) ATR-FTIR spectra of CNT (-) and individual components. **(b)** ATR-FTIR spectra of CNT (+) and individual components. **(c)** TGA of CNT (-) and individual components. **(d)** TGA spectra of CNT (+) and individual components.

Fig. S3 (a) Powder-XRD for CNT (+), CNT, and CNT (-). SEM images for **(b)** CNT (-), **(c)** CNT, and **(d)** CNT (+)

Fig. S4 Scan rate dependence studies in 10 mM K_4 [Fe(CN)₆] in 1M KOH with **(a)** CNT(-), **(b)** CNT, and **(c)** CNT(+). Scan rate dependence studies in 5 mM 2,6-DHAQ in 1 M KOH with **(d)** CNT(-), **(e)** CNT, and **(f)** CNT(+).

Calculation S1

Mass Transfer Coefficient (k_m) Calculation

 $k_m = \frac{i}{nFAC}$

 k_m = mass transfer coefficient (cm/s), i = limiting current (mA), n = number of electrons, A = area of electrode (cm²), C = concentration (mol/cm³), F = Faraday constant (~96485 C/mol),

(a) From Fig. 3b For 10 mM K₄Fe(CN)₆ solution in 1 M KOH $C = 0.01 \text{ mmol}/\text{ cm}^3$ $A = 0.196 \text{ cm}^2$ n = 1 • For CNT (-) $k_m = \frac{i}{nFAC}$ $=\frac{4.667}{96485*0.01}=0.00483 \text{ cm/s}$ • (ii) For CNT $k_m = \frac{i}{nFAC}$ $=\frac{7.137}{96485*0.01}=0.00739 \text{ cm/s}$ • (iii) For CNT (+) $k_{m} = \frac{i}{nFAC}$ $=\frac{10.9}{96485*0.01}=0.0113$ cm/s (b) From Fig. 3d For 5 mM 2,6-DHAQ solution in 1 M KOH $C = 0.005 \text{ mmol}/\text{ cm}^3$ $A = 0.196 \text{ cm}^2$ n = 2

$$k_{\rm m} = \frac{l}{nFAC}$$
$$= \frac{2.961}{2*96485*0.005} = 0.003 \text{ cm/s}$$

• (ii) For CNT

$$k_{\rm m} = \frac{i}{nFAC}$$
$$= \frac{5.069}{2*96485*0.005} = 0.005 \text{ cm/s}$$

$$k_{\rm m} = \frac{i}{nFAC}$$
$$= \frac{7.388}{2*96485*0.005} = 0.0076 \text{ cm/s}$$

Fig. S5 RDE studies at different rotations for 10 mM K_3 [Fe(CN)₆] in 1 M KOH with **(a)** CNT (-), **(b)** CNT and **(c)** CNT (+). RDE studies at different rotations for 5 mM 2,6-DHAQ in 1 M KOH with **(d)** CNT (-), **(e)** CNT and **(f)** CNT (+).

Fig. S6 (a) and (b) BET surface area for CNT (+), CNT and CNT (-).

Fig. S7 I-V data for electrical conductivity measurements extracted from the four-point probe method for CNT (+), unmodified CNT and CNT (-).

Fig. S8 Contact angle measurements for CNT (-), CNT and CNT (+) (Left to right).

The battery's half-cell and full-cell chemistries

Fig. S9 Charge-discharge cycling of the redox flow battery equipped with the CNT (+) electrode at various current densities.

Fig. S10 Charge-discharge cycling of the redox flow battery equipped with the CNT (+) electrode at various current densities. Here, the data is shown as a function of time.

Calculation S2

Energy Efficiency (EE) Calculation

$$\mathsf{EE} = \frac{(C * V)_{discharge}}{(C * V)_{charge}}$$

From Fig. 4d

• In case of CNT (-)

EE = $\frac{Area under the discharge curve (red discharge trace in Figure 4d)}{Area under the charge curve (red charge trace in Figure 4d)}$ $=\frac{208.89}{456.10}$ = 45.79 %

• In case of CNT

 $\mathsf{EE} = \frac{Area under the discharge curve (black discharge trace in Figure 4d)}{Area under the charge curve (black charge trace in Figure 4d)}$

- $=\frac{465.36}{684.21}$
- = 68.01 %
- In case of CNT (+)

```
EE = \frac{Area under the discharge curve (olive green discharge trace in Figure 4d)}{Area under the charge curve (olive green charge trace in Figure 4d)}
```

- $=\frac{857.55}{933.23}$

= 91.89 %

Fig. S11 TEM images of CNT (+) after charge-discharge cycling.

Fig. S12 SEM images of CNT (+) electrode utilized (a) at the cathodic interface and (b) at the anodic interface after long term charge-discharge.

Fig. S13 ATR-FTIR spectra of CNT (+) electrode utilized (a) at the cathodic interface and (b) at the anodic interface before and after charge-discharge cycling.

Fig. S14 EDX elemental mapping of CNT (+) electrode utilized **(a)** at the cathodic interface and **(b)** at the anodic interface after charge-discharge cycling. The signals of O, K and Fe in Fig. S14a originates from adsorbed iron species whereas the signals of K and O in Fig. S14b originates from adsorbed quinone molecule