Supporting Information

Disclosing Gate-Opening/Closing Events inside a Flexible Metal-Organic Framework loaded with CO₂ by Reactive and Essential Dynamics

Susanna Monti[#], Cheherazade Trouki^{\$}, Giovanni Barcaro^{\$}

[#]CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Pisa 56124, Italy. E-mail: ^{\$}CNR-IPCF, Institute of Chemical and Physical Processes, Pisa 56124, Italy.

Table of Content

- 1. Figure S1. Angle of a CO₂ molecule traveling in a channel with the Z axis.
- 2. **Figure S2.** CO₂ (four molecules) motion along the Z direction (inside the channels) as a function of the simulation time. Stationary states are evidenced by the highlighted areas. The arrows indicate diffusion along the channels. The blue plot corresponds to the CO₂ in the movie with grey C.
- 3. **Figure S3.** CO₂ motion along the Z direction (inside the channels) as a function of the simulation time compared with the rotations of the rings close by to identify the kicks responsible for diffusion.
- 4. Figure S4. Extracted structures of the A linkers for QC optimizations and rotational barriers estimations. Color code: O red, C dark cyan, F green. Top: single linker, torsional energy profile calculated at the M062X/6-31G(d,p) level of theory. Bottom: A linker pair, constrained (top), and optimized geometries (bottom) to give a rough estimate of the ring flipping barrier.
- 5. Table S1. Weights of the calculated PCA modes for selected A and B linkers.
- Figure S5. Linkers pairs forming a section of the channel. From top to bottom: type A, type A, type B. Mode 2 (green slice of the pie plot) identified by PCA (superimposing all the snapshots on the coordinated Ce atoms and carboxyl oxygens – rmsd values are reported in Figure 3). Structure color code: O red, C dark cyan, F green.
- 7. **Figure S6.** Histograms of the fluctuations of the first three principal components (or modes) of a) all six linkers; b) linkers A, c) linkers A, d) linkers B.
- Figure S7. Linkers pairs forming a section of the channel. Mode 3 identified by PCA (superimposing all the snapshots on the coordinated Ce atoms and carboxyl oxygens rmsd values are reported in Figure 3). Porcupine rendering of the main linker movements. Structure color code: O red, C dark cyan, F green.
- 9. Figure S8. Variability of the channel due to the libration of linkers A (six-linker portion). On the left, the channel has been filled with spheres using CAVER, whereas on the right, the surface accessible to the solvent (SAS) has been visualized to give an idea of the section variations. In a and c are displayed the librations with the maximum amplitude, while in b average structure (considering only the dominant mode Mode 1). Structure color code: O red, C dark cyan, F green.
- 10. **Figure S9**. Possible breathing effect in three parallel channels of the MOF structure: a) opening stage, b) closing stage.
- 11. Data connected to the force field parametrization and validation.

Figure S1. Angle of a CO₂ molecule (traveling in a channel) with the axis of the channel.

Figure S2. CO_2 (four molecules) motion along the Z direction (inside the channels) as a function of the simulation time. Stationary states are evidenced by the highlighted areas. The arrows indicate diffusion along the channels. The blue plot corresponds to the CO_2 in the Supplementary Video with grey C.

Figure S3. CO_2 motion along the Z direction (inside the channels) as a function of the simulation time compared with the rotations of the rings close by to identify the kicks responsible for diffusion.

Figure S4. Extracted structures of the A linkers for QC optimizations and rotational barriers estimations. Color code: O red, C dark cyan, F green. **Top:** single linker, torsional energy profile calculated at the M062X/6-31G(d,p) level of theory. **Bottom:** A linker pair, constrained (top), and optimized geometries (bottom) to give a rough estimate of the ring flipping barrier.

Mode	2A linkers	2A linkers	2 B linkers	4A + 2B linkers
	 %	%	%	%
1	60	65	38	55
2	15	9	16	14
3	6	7	11	7
4	6	6	10	5
5	5	4	7	4
6	2	3	5	4
7	1	2	4	3
8	1	2	3	3
9	1	1	3	3
10	1	1	3	2

 Table S1. Weights of the calculated PCA modes for selected A and B linkers

Figure S5. Linkers pairs forming a section of the channel. From top to bottom: type A, type A, type B. **Mode 2** (green slice of the pie plot) identified by PCA (superimposing all the snapshots on the coordinated Ce atoms and carboxyl oxygens – rmsd values are reported in **Figure S3**). Structure color code: O red, C dark cyan, F green.

Figure S6. Histograms of the fluctuations of the first three principal components (or modes) of a) all six linkers; b) linker A, c) linker A, d) linker B.

Figure S7. Linkers pairs forming a section of the channel. **Mode 3** identified by PCA (superimposing all the snapshots on the coordinated Ce atoms and carboxyl oxygens – rmsd values are reported in **Figure S5**). Porcupine rendering of the main linker movements. Structure color code: O red, C dark cyan, F green.

Figure S8. Variability of the channel due to the libration of linkers A (six-linker portion). On the left, the channel has been filled with spheres using CAVER, whereas on the right, the surface accessible to the solvent (SAS) has been visualized to give an idea of the section variations. In a and c are displayed the librations with the maximum amplitude, while in b average structure (considering only the dominant mode – Mode 1). Structure color code: O red, C dark cyan, F green.

Figure S9. Possible breathing effect in three parallel channels of the MOF structure: **a**) opening stage, **b**) closing stage. Some of the CO₂ molecules are visible inside the open channels. Structure color code: O red, C dark cyan, F green.

Additional Data related to ReaxFF Force field parametrization and validation

Quantum Chemistry DFT optimizations/MD-simulations

All DFT optimizations and MD simulations were carried out by using the Quantum Espresso (QE) suite of programs [Giannozzi, P; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; De Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21 (39). https://doi.org/10.1088/0953-8984/21/39/395502], employing PAW (Plane-Augmented-Waves) pseudopotentials [Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953], the PBE XC-functional and plane-waves, as basis sets to build Bloch states. Cutoffs on the wave function and electronic density were set to 40/400 Ry (1 Ry=313.8 Kcal/mol), respectively; the first Brillouin zone in the reciprocal space was sampled at the gamma point only, after verifying that the fully optimized structural parameters converged to a benchmark calculation with 80/800 Ry as cutoff values and a (2x4x6) mesh of k-points; the calculations were spin-restricted by applying Gaussian smearing of the one-particle energy levels of 0.002 Ry. The crystal structure of F4_MIL140A(Ce) was extracted from the experimental cif file and fully optimized following a two-step procedure: first, by using the experimental lattice constants, we optimized the coordinates of all the atoms; then, we optimized also the cell vectors and angles. The same procedure was repeated after removing the water molecules. Born-Oppenheimer MD simulations at ambient temperature were carried out with the QE software (adopting the same values of cutoffs and sampling the reciprocal space at the Gamma point) by choosing an integration time step of about 0.5 fs and the Berendsen thermostat.

Force Field Refinement

Refinement of the force field for describing the FRAMEWORK and its content

We used repeated parametrizations (by means of the fast and efficient Monte Carlo Force Field - MCFF parameter optimizer available in the Amsterdam Density Functional (ADF)package) to obtain a refined force field for the planned simulations. An example of one of these stages is reported below (ffield_bool).

A series of configurations generated by DFT optimizations and dynamics were used to re-tune selected parameters of the force field (highlighted below). The initial values of all the parameters were taken from well-tested ReaxFF force fields available in the literature(refs 29-31).

Training set: DFT optimized structures. GEOMETRY - Bonds distances and dihedral angles. The structures and other data are available from the authors upon reasonable request.

Optimized Parameters (MCFFOptimizer in ADF) - ffield file

In the ffield_bool file (see ReaxFF and ADF/ReaxFF manual), the optimized parameters are indicated by ${\bf 1.0000}$

Atoms

1	С	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	Н	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
3	0	0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
4	Се	1.00	000	0.000	0 0	.0000	1.	.0000	0.	0000	Ο.	0000	Ο.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	0000	0.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	0.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	0000	Ο.	0000	Ο.	0000	Ο.	0000	
5	F	0.00	000	0.000	0 0	.0000	0.	.0000	0.	0000	Ο.	0000	Ο.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	0000	Ο.	0000	Ο.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	0.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
6	Х	0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
		0.00	000	0.000	0 0	.0000	0.	.0000	0.	.0000	Ο.	0000	0.	0000	Ο.	0000	
Bo	onds	5															
	1	1	0.000	0 0	.0000	0.0	000	0.00	00	Ο.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	Ο.	0000	Ο.	0000	0.0	000	0.0	0000
	1	2	0.000	0 0	.0000	0.0	000	0.00	00	Ο.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	2	2	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	1	3	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	1	4	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	3	3	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
			0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	2	3	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	_		0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	2	4	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	~		0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	3	4	1.000	0 1	.0000	0.0	000	1.00	00	0.	0000	0.	0000	0.0	000	1.0	0000
			1.000	0 1	.0000	1.0	000	0.00	00	1.	0000	1.	0000	0.0	000	0.0	0000
	4	4	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
		-	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	0000
	T	5	1.000		.0000	0.0	000	1.00	00	0.	0000	0.	0000	0.0	000	1.0	
	~	-	1.000	0 1	.0000	1.0	000	0.00	00	1.	0000	1.		0.0	000	0.0	0000
	Ζ	С	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	2	F	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	3	5	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	5	F	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	5	J	0.000	0 0	.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	л	5	0.000		.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	2000
	4	J	0.000	0 0	0000	0.0	000	0.00	00	0.	00000	0.	0000	0.0	000	0.0	10000 1000
04	÷	liago			.0000	0.0	000	0.00	00	0.	0000	0.	0000	0.0	000	0.0	5000
01	1	2			0000	0 0	000	0 00	00	0	0000	0	0000				
	1	2	0.000	0 0	0000	0.0	000	0.00	00	0.	00000	0.	0000				
	2	3	0.000	0 0	0000	0.0	000	0.00	00	0.	0000	0.	0000				
	3	4	1.000	0 1	.0000	1 0	000	1 00	00	1	0000	0	0000				
	2	4	0.000	 0 0	. 0000	0 0	000	0 00	00	<u> </u>	0000	0	0000				
	1	5	1.000	0 1	.0000	1 0	000	1.00	00	1	0000	0	0000				
	2	5	0.000	- <u>-</u> 0 0	.0000	0.0	000	0,00	00	0	0000	0.	0000				
	3	5	0.000	0 0	.0000	0 0	000	0.00	00	0	0000	0	0000				
	4	5	0.000	0 0	.0000	0.0	000	0.00	00	0	0000	0	0000				
	-	-		- 0		U • U	~ ~ ~ ~		~ ~	.		· •					

```
Reactive MD-force field used for F4 MIL140A(Ce)
 39
        ! Number of general parameters
   50.0000 !Overcoordination parameter
   9.5469 !Overcoordination parameter
   26.5405 !Valency angle conjugation parameter
    1.7224 !Triple bond stabilisation parameter
    6.8702 !Triple bond stabilisation parameter
   60.4850 !C2-correction
   1.0588 !Undercoordination parameter
   4.6000 !Triple bond stabilisation parameter
   12.1176 !Undercoordination parameter
   13.3056 !Undercoordination parameter
  -70.5044 !Triple bond stabilization energy
   0.0000 !Lower Taper-radius
   10.0000 !Upper Taper-radius
    2.8793 !Fe dimer correction
   33.8667 !Valency undercoordination
    6.0891 !Valency angle/lone pair parameter
    1.0563 !Valency angle
    2.0384 !Valency angle parameter
    6.1431 !Fe dimer correction
    6.9290 !Double bond/angle parameter
    0.3989 !Double bond/angle parameter: overcoord
   3.9954 !Double bond/angle parameter: overcoord
   -2.4837 !Fe dimer correction
   5.7796 !Torsion/BO parameter
   10.0000 !Torsion overcoordination
   1.9487 !Torsion overcoordination
   -1.2327 !Reserved
    2.1645 !Conjugation
    1.5591 !vdWaals shielding
   0.1000 !Cutoff for bond order (*100)
    2.1365 !Valency angle conjugation parameter
   0.6991 !Overcoordination parameter
   50.0000 !Overcoordination parameter
    1.8512 !Valency/lone pair parameter
    0.5000 !ACKS2 softness parameter
   20.0000 !Scale factor (d) in dispersion (LJ)
    5.0000 !Reserved
    0.0000 !1: disable undecoord term in val angle
    2.6962 !Valency angle conjugation parameter
     ! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;qammaEEM;cov.r2;#
            alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u.
            cov r3;Elp;Heat inc.;bo131;bo132;bo133;softcut;n.u.
            ov/un;val1;n.u.;val3,vval4
 С
     1.3674 4.0000 12.0000 2.0453
                                            0.1444
                                                     0.7920
                                                               1.1706
                                                                        4.0000
     9.0000 1.5000 4.0000 27.5134 79.5548 6.7897 6.0000 0.0000
     1.1168 0.0000 181.0000 14.2732 24.4406 6.7313 0.8563 0.0000

        -4.1021
        5.0000
        1.0564
        4.0000
        2.9663
        0.0000
        0.0000

        0.8930
        1.0000
        1.0080
        1.3550
        0.0930
        0.8203
        -0.1000

        8.2230
        33.2894
        1.0000
        0.0000
        121.1250
        3.7248
        9.6093

                                                                         0.0000
                                                                         1.0000
                                                                        1.0000
     -0.1000 0.0000 61.6606 3.0408 2.4197 0.0003 1.0698 0.0000
    -19.4571 4.2733 1.0338 1.0000 2.8793 0.0000 0.0000
                                                                        0.0000
     1.2450
               2.0000 15.9990
                                   2.3890
                                            0.1000
                                                      1.0898
                                                               1.0548
                                                                         6.0000
 0
     9.7300 13.8449
                        4.0000 37.5000 116.0768 8.5000 8.3122
                                                                        2,0000
     0.9049 0.4056 59.0626 3.5027 0.7640 0.0021 0.9745
                                                                        0.0000
     -3.5500 2.9000 1.0493 4.0000
2.6062 3.0000 140.1160 2.8303
                                           2.9225 0.0000 0.0000
0.3338 1.2500 0.0100
                                                                         0.0000
    2.6062
                                                               0.0100
                                                                         3,0000
 Се
     11.8468 12.5107 3.0000 0.0078 0.0000 -3.7987 7.2405 0.0000
     -1.2000 0.0000 101.0038 5.3430 10.1260 0.7590 0.0000 0.0000
     -2.5000 2.4588 1.0338 6.0000 2.5791 0.0000 0.0000
1.1846 1.0000 18.9984 1.7922 0.1267 0.4038 -0.1000
                                                                         0.0000
                                                                         7.0000
 F
    10.3184 7.5000 1.0000 9.2533 0.2000 9.3891 6.5612 2.0000
                                                                        0.0000
     -1.0000 3.5571 18.0000 6.9821 4.1799 1.0561 0.0000
   -7.3000 2.6656 1.0493 4.0000 2.9225
-0.1000 2.0000 1.0080 2.0000 0.0000
                                                      0.0000
                                                               0.0000
                                                                         0.0000
                                                     1.0000 -0.1000
                                                                        6.0000
 Х
     10.0000 2.5000 4.0000 0.0000 0.0000 3.5000 85.0000 0.0000
     -0.1000 0.0000 -2.3700 8.7410 13.3640 0.6690 0.9745
                                                                        0.0000
    -11.0000
               2.7466
                         1.0338 6.2998 2.8793
                                                      0.0000 0.0000
                                                                         0.0000
```

pbe2;pbo3;pbo4;n.u.;pbo1;pbo2;ovcorr

^{15 !} Nr of bonds; Edis1;LPpen;n.u.;pbe1;pbo5;13corr;pbo6

1	1	80.886	5 107	.9944	52	.0636	0	.5218	-0.3	636	1.	0000	34.	.9876	0.776	9
1	2	6.124	4 -0	.1693	8 8	.0804	1	.0000	-0.0	586	8.	1850	1.	.0000	0.000	0
T	Ζ	5.229	0 0	.0000) ()) ()	.0000	-0	.0000	-0.0	500	⊥. 6.	9136	ю. О.	.0000	0.000	2
2	2	153.393	4 0	.0000	0	.0000	-0	.4600	0.0	000	1.	0000	6.	.0000	0.730	0
		6.250	0 1	.0000	0 0	.0000	1	.0000	-0.0	790	6.	0552	0.	.0000	0.000	0
1	3	95.622	8 137	.8227	68	.8810	0	.4203	-0.3	774	1.	0000	18.	.8662	0.684	5
1	4	0.000	0 -0	.0000) 9) 0	.0000	0	.5000	-0.1	000	1.	0000	16.	.0000	0.500	0
		0.500	0 -0	.2500) 15	.0000	1	.0000	-0.1	000	9.	0000	0.	.0000	0.000	0
3	3	142.285	8 145	.0000) 50	.8293	0	.2506	-0.1	000	1.	0000	29.	.7503	0.605	1
2	3	0.345	1 -0	.1055	59 10	.0000	1	.0000	-0.1	225	5.	5000	1.	.0000	0.000	0 6
2	J	1.115	0 1	.0000	, 0) 0	.0000	0	.0000	-0.0	920	4.	2790	0.	.0000	0.000	0
2	4	93.484	1 0	.0000	0 0	.0000	-0	.6193	-0.5	000	0.	0000	35.	.0000	0.206	9
2		0.290	6 -0	.5000	25	.0000	0	.0000	-0.1	018	8.	8004	0.	.0000	0.000	0
3	4	2 742	9 60 5 -0	.1493 3288	5 U 2 10	.0000	-0	.2126	-0.5	000	0.	8724	35.	.0000	0.175	6 0
4	4	134.164	9 0	.0000) 10	.0000	-0	.7905	-0.2	000	ч. О.	0000	16.	.0000	0.100	0
		3.044	3 -0	.2000	15	.0000	0	.0000	-0.2	106	5.	0057	0.	.0000	0.000	0
1	5	242.540	3 2	.3373	8 0	.0000	-0	.7882	-0.5	000	1.	0000	35.	.0000	1.035	1
2	5	4.307	4 -0	0000) 14) 0	.3578	1 0-	.0000	-0.0	000 991	5. 0	1373	1. 16	0000	0.000	0
2	5	16.369	9 -0	.2000) 15	.0000	1	.0000	-0.2	265	7.	1308	0.	.0000	0.000	0
3	5	0.000	0 0	.0000	0 0	.0000	0	.5000	-0.2	000	0.	0000	16.	.0000	0.500	0
_	_	1.000	1 -0	.2000) 15	.0000	1	.0000	-0.1	000	15.	0000	0.	.0000	0.000	0
5	5	0.721	6 U 7 -0	2500) U 15	.0000	1	.2298	-0.3	500	⊥. 7	3516	25.	0000	0.842	/
4	5	41.159	0 0	.0000	0 0	.0000	0	.6401	-0.2	000	0.	0000	16.	.0000	0.408	5
		0.099	2 -0	.2000	15	.0000	1	.0000	-0.0	687	5.	9021	0.	.0000	0.000	0
10	0	! Nr of	off-	diago	nal	terms;	Ed	iss;Ro;	gamm	a;rs	igma	;rpi	rpi2;	2		
1 1	2	0.123	9 I 8 1	9606	9 10	.846/	⊥ 1	.1210 3240	-1.0	000	-1. 1	0000				
2	3	0.028	3 1	.2885	5 10	.9190	0	.9215	-1.0	000	-1.	0000				
3	4	0.386	31	.6627	10	.4263	1	.8027	1.8	954	-1.	0000				
2	4	0.241	0 1	.8010	9	.0000	2	.0472	-1.0	000	-1.	0000				
⊥ 2	5	0.104	/ 1 1 1	.6152 7204	: 10 10	3632	1	.3032 5386	-0.9	400	-1.	0000				
3	5	0.154	7 2	.1287	' 10	.6188	-1	.0000	-1.0	000	-1.	0000				
4	5	0.200	2 2	.1104	11	.4482	1	.9513	-1.0	000	-1.	0000				
5	5	0.106	8 2	.1756	5 9	.4701	1	.8620	-0.9	330	-1.	0000				
40 1	1	! Nr oi 1 74	angle 9085	es;at 44 7	:1;at 1514	2;at3; 0 91	'l'he 44	tao,o;i	ka;kb hn	1 vq;	;pv2 50	י ר א	556	2 57	15	
1	1	2 65.	7758	14.5	234	6.24	81	0.000	00	0.56	65	0.0	000	1.62	55	
2	1	2 70.	2607	25.2	202	3.73	312	0.000	0 0	0.00	50	0.0	000	2.75	00	
1	2	2 0.	0000	0.0	000	6.00	000	0.000	00	0.00	00	0.0	000	1.04	00	
⊥ 2	2	1 U. 2 O	0000	27 9	110	/./3 5.86	350 335	0.000) ()) ()	0.00	00	0.0	000	1.04	00	
1	1	5 65.	7758	14.5	234	6.24	81	0.000	00	0.56	65	0.0	000	1.62	55	
5	1	5 70.	2607	25.2	202	3.73	312	0.000	00	0.00	50	0.0	000	2.75	00	
1	5	5 0.	0000	0.0	000	6.00	000	0.000	00	0.00	00	0.0	000	1.04	00	
1	5	1 U. 5 O	0000	3.4	110	7.73	350	0.000) ()) ()	0.00	00	0.0	000	1.04	00	
1	1	3 49.	6811	7.1	.713	4.38	389	0.000	00	0.71	71	10.2	661	1.04	63	
3	1	3 77.	7473	40.1	718	2.98	302 ·	-25.30	63	1.61	70 -	46.1	315	2.25	03	
2	1	3 65.	0000	13.8	815	5.05	583	0.000	0 0	0.49	85	0.0	000	1.49	00	
1	3	1 73.	5312 4761	44.7	275	0.73	354	0.000	00	3.00	00 51	0.0	000	1.06	84	
⊥ 3	3	3 80.	7324	30.4	554	1.05	953	0.000	00	1.63	10	50.0	000	1.07	83	
1	3	2 70.	1880	20.9	562	0.38	364	0.000	00	0.00	50	0.0	000	1.69	24	
2	3	3 75.	6935	50.0	000	2.00	000	0.000	0 0	1.00	00	0.0	000	1.16	80	
2	3	2 85.	8000	9.8	453	2.27	20	0.000	00	2.86	35	0.0	000	1.58	00	
۲ ۲	2	30. 30	0000	25.0	0000	3.00 2 ga	900 100	0.000	0 0 0	1.00	00 00	0.0	000	1.04 2 97	00 74	
2	2	3 0.	0000	8.5	5744	3.00	000	0.000	00	0.00	00	0.0	000	1.04	21	
3	4	3 76.	2996	3.2	695	3.55	597	0.000	0 0	1.00	00	0.0	000	1.43	53	
4	3	4 82.	2036	3.7	033	7.00	000	0.000	00	1.00	00	0.0	000	1.00	00	
3	4 2	4 56.	2421 6296	7.1	.704	2.76	080	0.000) ()) ()	1.00	00	0.0	000	3.99	⊥6 71	
2	с З	- JJ. 4 90.	0000	10.0	0000	3.00	000	0.000	00	1.00	00	0.0	000	3.12	74	
2	4	2 86.	0792	36.1	486	2.43	342	0.000	0 0	1.00	00	0.0	000	3.19	40	

2	л	2	0.0	0000	20	0254	0	0000	0	0000	1	0000	0	0000	1	0265	
2	4	2	90	.0000	29	.9334	0	.0209	0	.0000	1	.0000	0	.0000	1	.0203	
2	2	4	0	.0000	2	.5000	2	.0000	0.	.0000	1.	.0000	0	.0000	1.	.5000	
3	2	4	0	.0000	5	.0000	2	.0000	0	.0000	1.	.0000	0	.0000	1	.5000	
2	4	4	0	.0000	2	.5000	2	.0000	0	.0000	1.	.0000	0	.0000	1.	.5000	
4	2	4	0	.0000	7	.5000	2	.0000	0	.0000	1.	.0000	0	.0000	1.	.2500	
3	2	5	0	.0000	8	.5744	3	.0000	0	.0000	0.	.0000	0	.0000	1.	.0421	
2	5	2	0	.0000	27	.9213	5	.8635	0	.0000	0.	.0000	0	.0000	1	.0400	
4	5	4	0	.0000	2	.0000	1	.0000	0	.0000	1.	.0000	0	.0000	1	.0000	
5	4	5	40	.0000	1	.0000	1	.0000	0	.0000	1.	.0000	0	.0000	1	.0000	
4	5	5	0	.0000	10	.0000	1	.0000	0	.0000	1.	.0000	0	.0000	1	4000	
4	4	5	20	.0000	0	.0000	1	.0000	0	.0000	1.	.0000	0	.0000	1	4000	
33		! N	r o	f t.or	sion	s:at1:	at2	at3:a	t.4:	:v1:v2:	V3	V2 (BO)	:v	coni;n	. 11 : 1	ı	
1	1	1	1	2.1	207	26.87	13	0.51	60	-9.000	0	-2.839	4	0.00	0	0.000	0
1	1	1	2	-0 2	500	29.21	31	0.01	45	-4 958	2 U	-2 180	2	0 00) ()) ()	0 000	10
2	1	1	2	-0.2	500	31 20	181	0.25	30 10	-1 892	23	-2 267	7	0.00	20	0.000	\cap
1	1	1	ے د	0.2	500	20 21	01 01	0.10)) / E	1.052	- J 1	2.207	2	0.00	20	0.000	0
7	1	1	5	-0.2	500	29.21	.31	0.29	40	-4.958	51) 2	-2.180	2	0.00	20	0.000	10
2	1	1	5	-0.2	500	31.20	181	0.45	29	-4.892	23	-2.207	/	0.00	10	0.000	0
5	1	1	5	-0.2	500	31.20	181	0.45	39	-4.892	23	-2.26/	/	0.00	10	0.000	0
T	5	5	T	-0.5	529	9.95	19	0.14	90	-6.070	9	0.000	0	0.00	00	0.000	0
1	1	1	3	-0.3	495	22.21	.42	-0.29	59	-2.500	00	-1.906	6	0.00	00	0.000	0
2	1	1	3	0.0	646	24.31	.95	0.62	59	-3.960)3	-1.000	0	0.00	00	0.000	0
5	1	1	3	0.0	646	24.31	.95	0.62	59	-3.960)3	-1.000	0	0.00	00	0.000	0
3	1	1	3	-0.5	456	5.57	56	0.84	33	-5.192	24	-1.018	0	0.00	00	0.000	0
1	1	3	1	1.7	555	27.92	67	0.00	72	-2.653	33	-1.000	0	0.00	00	0.000	0
1	1	3	2	-1.4	358	36.78	30	-1.00	00	-8.182	21	-1.000	0	0.00	00	0.000	0
2	1	3	1	-1.3	959	34.50)53	0.72	00	-2.571	14	-2.164	1	0.00	00	0.000	0
5	1	3	1	-1.3	959	34.50	53	0.72	00	-2.571	14	-2.164	1	0.00	00	0.000	0
2	1	3	2	-2.5	000	70.05	97	1.00	00	-3.553	39	-2.992	9	0.00	00	0.000	0
5	1	3	5	-2.5	000	70.05	97	1.00	00	-3.553	39	-2.992	9	0.00	00	0.000	0
1	1	3	3	0.6	852	11.28	19	-0.47	84	-2.500	0	-2.108	5	0.00	0.0	0.000	0
5	1	3	3	0.1	933	80.00	000	1.00	0.0	-4.059	90	-3.000	0	0.00	0	0.000	0
2	1	3	ې ۲	0 1	933	80.00		1 00	00	-4 059	20	-3 000	0	0 00	10	0 000	10
2	1	3	1	-1 9	889	76 48	20	-0 17	96	-3 830	י 1	-3 000	0	0 00) ()) ()	0.000	10
3	1	3	5	1.2	160	70.40	107	_0.70	90 97	_4 210)	-3 000	0	0.00	20	0.000	0
2	1	2	2	0.2	160	72.77	07	-0.70	07	4.210	20	-3.000	0	0.00	20	0.000	0
2	1	2	2	2 5	100	71 07	107	-0.70	10	2 163	50 51	-3.000	0	0.00	20	0.000	0
3	1	2	3	-2.5	000	/1.0/	12	1 00	42	-3.103) T	-3.000	0	0.00	10	0.000	0
Ţ	3	3	1	2.5	000	-0.60	102	1.00	00	-3.425	91	-2.883	8	0.00	10	0.000	0
1	3	3	5	-2.5	000	-3.38	322	0.70	04	-5.446	57	-2.958	6	0.00)()	0.000	0
1	3	3	2	-2.5	000	-3.38	22	0.70	04	-5.446	57	-2.958	6	0.00)()	0.000	0
5	3	3	5	2.5	000	-4.00	000	0.90	00	-2.500	00	-1.000	0	0.00	00	0.000	0
2	3	3	2	2.5	000	-4.00	000	0.90	00	-2.500	00	-1.000	0	0.00	00	0.000	0
1	3	3	3	1.2	329	-4.00	00	1.00	00	-2.500	00	-1.747	9	0.00	00	0.000	0
5	3	3	3	0.8	302	-4.00	00	-0.77	63	-2.500	00	-1.000	0	0.00	00	0.000	0
2	3	3	3	0.8	302	-4.00	000	-0.77	63	-2.500	00	-1.000	0	0.00	00	0.000	0
3	3	3	3	-2.5	000	-4.00	000	1.00	00	-2.500	00	-1.000	0	0.00	00	0.000	0
1		! N	r o:	f hyd	roge	n bonc	ls;a	t1;at2	;at3	3;Rhb;I	Dehk	;vhb1					
3	2	3	2	.1200	-3	.5800	1	.4500	19	.5000							

Refinement of a few bond distances and the C-F-F-C dihedral angle

Comparison of the positions of the ligand oxygens sampled through quantum and classical MD simulations at ambient temperature. In both simulations, we sampled 12000 configurations.

