Pixelated liquid perovskite array for high-sensitivity and high-resolution X-ray imaging scintillation screens

Mingzhu Hu^{1,2,3,§}, Yumeng Wang^{1,2,§}, Shengpeng Hu^{1,2,§}, Zongpeng Wang⁴, Bi Du⁴,Yanjun Peng^{1,2}, Jiawei Yang^{1,2}, Yunjie Shi¹, Dongdong Chen^{1,2}, Xi Chen^{1,2}, Ziwen Zhuang¹, Zhixun Wang⁶, Xi Chen^{1,5}, Jiecheng Yang^{7,8}, Yongshuai Ge^{7,8}, Eyu Wang⁹, Quan Wen⁹, Shuang Xiao¹⁰, Ming Ma^{1,5}, Weimin Li^{1,5}, Jie Zhang^{1,5}, De Ning^{1,5*}, Lei Wei^{6*}, Chunlei Yang^{1,5*} and Ming Chen^{1,5*}

¹Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China

²Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China

³School of Microelectronics, University of Science and Technology of China, Hefei 230026, People's Republic of China

⁴Shenzhen Angell Technology Co. Ltd., Shenzhen 518057, People's Republic of China

⁵University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁶School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

⁷Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

⁸Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

⁹Seamark Opoticelectronic Technology (Shenzhen) Co. Ltd, Shenzhen, 518103, People's Republic of China

¹⁰Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China

*Corresponding author: de.ning@siat.ac.cn; wei.lei@ntu.edu.sg; cl.yang@siat.ac.cn;

ming.chen2@siat.ac.cn;

[§]These authors contributed equally to this work

Keywords: perovskite, X-ray imaging, liquid scintillator screen, pixelated, high sensitivity.

Figure S1 Cross-sectional image of the pixelated CsPbBr₃/PPO liquid scintillator arrays

Figure S2 (a) Photograph of the PPO powder. (b) RL spectra of PPO powder. Inset is the image of PPO under X-ray irradiation.

Figure S3 Energy level alignment for the proposed mechanism of enhanced RL in the CsPbBr₃ QDs/PPO scintillator.

Figure S4 (a) PL spectrum of CsPbBr₃ QDs/PPO LSS in ambient atmosphere. (b) PL peak intensity and FWHM of CsPbBr₃ QDs/PPO LSS extracted from (a). (c) PL peak position of CsPbBr₃ QDs/PPO LSS extracted from a).

Figure S5 X-ray imaging optical system.

Figure S6. X-ray imaging of the standard line-pair card by the pixelated CsPbBr₃/PPO LSS.

Figure S7. Modulation transfer function (MTF) of CsPbBr₃ QDs/PPO LSS

Figure S8 TEM image and particle size distribution of the Mn:CsPbCl₃ QDs

Figure S9 (a-b)X-ray image of CsPbCl₃ QDs and Mn: CsPbCl₃ QDs under X-ray irradiation with different dose rate, respectively. (c) RL spectra of CsPbCl₃ QDs and Mn: CsPbCl₃ QDs.

Figure S10 (a) PL spectrum of Mn: CsPbCl₃ QDs/PPO LSS in ambient atmosphere. (b) PL peak intensity and FWHM of Mn: CsPbCl₃ QDs/PPO LSS extracted from (a). (c) PL peak position of Mn: CsPbCl₃ QDs/PPO LSS extracted from (a).

Figure S11. X-ray images and photographs of circuit board, ball-point pen and leadwire using Mn: CsPbCl₃ QDs/PPO LSS.

Figure S12 X-ray imaging of the standard line-pair card by the pixelated Mn: CsPbCl₃/PPO LSS.

Figure S13. MTF of Mn:CsPbCl₃ QDs/PPO LSS

Figure S14. (a-b) Optical image of the pixelated CsPbBr₃/PPO and Mn:CsPbCl₃ QDs/PPO liquid scintillator arrays under UV light excitation after the repeated filling/packaging process, respectively.

Figure S15. RL spectra of standard liquid scintillator (PPO+POPOP+toluene), CsPbBr₃(60 mg/ml), CsPbBr₃(60 mg/ml)+PPO (30 mg/ml) and CsPbBr₃(60 mg/ml)+PPO (60 mg/ml), measured at 90 kV, 89 uA

Figure S16 RL spectra of CsPbBr₃ QDs/PPO LSS with 2 mm and 4 mm thickness (30 kV-50 µA).

Figure S17 RL spectra of CsPbBr₃ QDs/PPO LSS with 2 mm and 4 mm thickness (60 kV-50 μ A and 70 kV-50 μ A).

Figure S18 RL spectra of CsPbBr₃ QDs/PPO LSS with 4 mm and 1 cm thickness (80 kV-50 μ A and 90 kV-50 μ A).

Figure S19 Schematic diagram of the energy resolved X-ray detector based on the LSS.

Voltage-	20 kV-	20 kV-	20 kV- 30	20 kV- 40	20 kV- 50	20 kV- 60	20 kV- 70	20 kV- 80	20 kV- 90	20 kV-
current	10 μΑ	20 µА	μΑ	100 μΑ						
Dose rate (µGy/s)	15.25	29.72	44.17	58.61	73.33	88.89	102.78	119.44	130.56	144.63

Table S1 Measured dose rate as the function of tube voltage and current.

Scintillator	Light yield (Photons/keV)	
CsI(TI) : Commercial Solid	54.0	473%
Nal(TI) : Commercial Solid	38.0	330%
Standard LS : PPO+POPOP+toluene	11.4	100%
Hybrid LS : CsPbBr ₃ (60 mg/ml)+PPO (30 mg/ml)	9.6	84%
Hybrid LS : CsPbBr ₃ (60 mg/ml)+PPO (60 mg/ml)	10.6	93%
CsPbBr ₃ (60mg/ml)	3.0	27%

Table S2. Comparison of the light yield of various solid and liquid scintillators. The light yield of the standard PPO+POPOP+toluene is known, then the light yield values of other liquid scintillators were evaluated versus to that of the standard PPO+POPOP +toluene scintillator. The efficiency of the commercial CsI and NaI solid scintillator were obtained from Ref. (Tsipenyuk, Y. M. Physical methods, instruments and measurements, Volume II, p. 71).